Что такое альфа-распад и бета-распад? Бета-распад, альфа-распад: формулы и реакции. Типы ядерных превращений, альфа и бета-распад

2.3 Закономерности α - и β -распада

Активностью A нуклида в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:

Единица активности беккерель (Бк) : 1Бк — активность нуклида, при которой за 1с происходит один акт распада. Внесистемная единица активности нуклида в радиоактивном источнике — кюри (Кu) : 1 Кu=3,7·10 10 Бк.

Альфа-распад . Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α-частица – ядро атома гелия . Примером такого процесса может служить α-распад радия:

Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость α-частиц, испускаемых при α-распаде ядер радия, измеренная по кривизне траектории в магнитном поле, приблизительно равна 1,5·10 7 м/с, а соответствующая кинетическая энергия около 7,5·10 –13 Дж (приблизительно 4,8 МэВ). Эта величина легко может быть определена по известным значениям масс материнского и дочернего ядер и ядра гелия. Хотя скорость вылетающей α-частицы огромна, но она все же составляет только 5 % от скорости света, поэтому при расчете можно пользоваться нерелятивистским выражением для кинетической энергии.

Исследования показали, что радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде. При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рисунке 2.4.

Рисунок 2.4 - Энергетическая диаграмма α-распада ядер радия. Указано возбужденное состояние ядра радона Переход из возбужденного состояния ядра радона в основное сопровождается излучением γ-кванта с энергией 0,186 МэВ

Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.

В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т. е. α-частица. Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия α-частицы в ядре недостаточна для преодоления этого барьера (рисунок 2.5). Вылет α-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером. Явление туннелирования имеет вероятностный характер.

Бета-распад . При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут (см. § 1.2), они возникают при β-распаде в результате превращения нейтрона в протон. Этот процесс может происходить не только внутри ядра, но и со свободными нейтронами. Среднее время жизни свободного нейтрона составляет около 15 минут. При распаде нейтрон превращается в протон и электрон

Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино . Она обозначается символом Поэтому реакция распада нейтрона записывается в виде

Аналогичный процесс происходит и внутри ядер при β-распаде. Электрон, образующийся в результате распада одного из ядерных нейтронов, немедленно выбрасывается из «родительского дома» (ядра) с огромной скоростью, которая может отличаться от скорости света лишь на доли процента. Так как распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром носит случайный характер, β-электроны могут иметь различные скорости в широком интервале значений.

При β-распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным. Дочернее ядро оказывается ядром одного из изотопов элемента, порядковый номер которого в таблице Менделеева на единицу превышает порядковый номер исходного ядра. Типичным примером β-распада может служить превращение изотона тория возникающего при α-распаде урана в палладий

Наряду с электронным β-распадом обнаружен так называемый позитронный β + -распад, при котором из ядра вылетают позитрон и нейтрино . Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей. Позитроны возникают в результате реакции превращения протона в нейтрон по следующей схеме:

Гамма-распад . В отличие от α- и β-радиоактивности, γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.

Расстановка ударений: А`ЛЬФА-РАСПА`Д

АЛЬФА-РАСПАД - радиоактивное превращение ядра, сопровождающееся испусканием альфа-частиц. При любом А.-р. из исходного ядра X с массовым числом А (число частиц в ядре) и атомным номером Z (число протонов в ядре) образуется новое ядро У с массовым числом А - 4 и атомным номером Z - 2 (см. Радиоактивность, Ядро атомное ): , где - альфа-частица (ядроизотопа гелия). При А.-р. происходит образование ядер нового элемента, смещенного в таблице Д. И. Менделеева на две клеточки левее исходного ядра. Такие самопроизвольные превращения ядер атомов сопровождаются выделением относительно больших количеств энергии, не зависят от внешних условий и обусловлены только внутренней структурой распадающихся ядер атомов.

Впервые закономерности А.-р. были установлены путем наблюдения за распадом радия (см.) - к-рый испускает альфа-частицы и превращается в новый радиоактивный газообразный элемент радон (cм.) - Измерения атомного веса радона подтвердили такое превращение.

Все тяжелые ядра атомов с Z больше 82 являются радиоактивными ядрами; среди этих элементов есть альфа-активные изотопы. Эти неустойчивые изотопы претерпевают цепочки альфа- и бета-распадов до тех пор, пока не превращаются в стабильные изотопы свинца (см. Радиоактивность ). Тяжелые ядра являются наименее устойчивыми, т. к. с увеличением Z возрастают кулоновские силы отталкивания протонов. Существуют также более легкие альфа-активные ядра: изотопы самария - Sm 146, 147, 152 , вольфрама - , неодима - и - платины - . Чем менее устойчиво ядро, тем оно быстрее распадается и испускает альфа-частицы с большей энергией - Е . Для различных альфа-активных ядер Е = 2 - 10 Мэв , а период полураспада Т изменяется в очень широких пределах: от 3,04⋅10 -7 сек до 2,2⋅10 17 лет . При А.-р. из невозбужденного материнского ядра обычно образуется невозбужденное дочернее ядро. При этом испускаются альфа-частицы одинаковой энергии, а ядро испытывает отдачу. Энергии ядра отдачи и альфа-частицы обратно пропорциональны их массам. Встречаются также изотопы, ядра к-рых, испуская альфа-частицы, превращаются в ядра, находящиеся в различных энергетических состояниях (нормальном и возбужденных). В этом случае испускаются не только альфа-частицы, но и гамма-кванты нескольких энергий. У некоторых изотопов с малыми периодами полураспада (Ро 211, 212; 214) наблюдаются переходы из возбужденных состояний с испусканием альфа-частиц значительно большей энергии, чем при переходе из невозбужденного состояния. Таких длиннопробежных частиц относительно мало.

В медицине и радиобиологии альфа-активные изотопы находят широкое применение для лечения (см. Лучевая терапия, Радий, Радон ) и диагностики. В последние годы альфа-активные изотопы усиленно изучаются радиобиологами и токсикологами, т. к. они применяются в атомной промышленности и атомной технике. См. также Альфа-излучение, Альфа-терапия.

Библиогр .: Белоусова И. М . и Штуккенберг Ю. М . Естественная радиоактивность, М., 1961; Кюри М . Радиоактивность, пер. с франц., М., 1960; Шпольский Э. В . Атомная физика, т. 2, С; 516, М.-Л., 1951.

Ю. М. Штуккенберг.


Источники:

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.

В соответствии с видами радиоактивных излучений существуют несколько видов радиоактивного распада (типов радиоактивных превращений). Радиоактивному превращению подвергаются элементы, в ядрах которых слишком много протонов или нейтронов. Рассмотрим виды радиоактивного распада.


1. Альфа-распад характерен для естественных радиоактивных элементов с большим порядковым номером (т.е. с малыми энергиями связи). Известно около 160 альфа-активных видов ядер, в основном порядковый номер их более 82 (Z > 82). Альфа-распад сопровождается испусканием из ядра неустойчивого элемента альфа-частицы, которая представляет собой ядро атома гелия Не (в его составе 2 протона и 2 нейтрона). Заряд ядра уменьшается на 2, массовое число - на 4.


ZАХ → Z-2 А-4 У + 2 4Не; 92 238U →24 Не + 90 234Th;


88 226Ra→2 4He + 86 222Ra + γ изл.


Альфа - распад подвергается более 10% радиоактивных изотопов.


2. Бета-распад. Ряд естественных и искусственных радиоактивных изотопов претерпевают распад с испусканием электронов или позитронов:


а) Электронный бета-распад. характерен как для естественных, так и для искусственных радионуклидов, которые имеют излишек нейтронов (т.е. в основном для тяжелых радиоактивных изотопов). Электронному бета-распаду подвергается около 46% всех радиоактивных изотопов. При этом один из нейтронов превращается в , а ядро испускает и антинейтрино. Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остается без изменения.


АZ Х → АZ+1 У + е- + v-; 24194Pu→24195Am + e- + v-; 6429Cu → 6430Zn + e- + v-; 4019K → 4020Ca + e- + v-.


При испускании β-частиц ядра атомов могут находиться в возбужденном состоянии, когда в дочернем ядре обнаруживается избыток энергии, которая не захвачена корпускулярными частицами. Этот излишек энергии высвечивается в виде гамма-квантов.


13785Cs → 13756 Ва + е -+ v- + γ изл.;


б) позитронный бета-распад. Наблюдается у некоторых искусственных радиоактивных изотопов, у которых в ядре имеется излишек протонов. Он характерен для 11% радиоактивных изотопов, находящихся в первой половине таблицы Д.И.Менделеева (Z<45). При позитронном бета-распаде один из протонов превращается в , заряд ядра и соответственно атомный номер уменьшается на единицу, а массовое число остается без изменений. Ядро испускает позитрон и нейтрино.


AZX → AZ-1У + е+ + v+; 3015P → 3014Si + e+ + v+; 6428Ni + e+ + v+.


Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» или взаимодействует со свободным электроном, образуя пару «позитрон-электрон», которая мгновенно превращается в два гамма-кванта с энергией, эквивалентной массе частиц (е и е). Процесс превращения пары «позитрон-электрон» в два гамма-кванта получил название аннигиляции (уничтожения), а возникающее электромагнитное излучение - аннигиляционного. В данном случае происходит превращение одной формы материи (частиц вещества) в другую - гамма-фотоны;


в) электронный захват. Это такой вид радиоактивного превращения, когда ядро атома захватывает электрон из ближайшего к ядру энергетического К-уровня (электронный К-захват) или реже в 100 раз - из L уровня. В результате один из протонов ядра нейтрализуется электроном, превращаясь в . Порядковый номер нового ядра становится на единицу меньше, а массовое число не изменяется. Ядро испускает антинейтрино. Освободившееся место, которое занимал в К или L-уровне захваченный , заполняется электроном из более удаленных от ядра энергетических уровней. Избыток энергии, освободившийся при таком переходе, испускается атомом в виде характеристического рентгеновского излучения.


AZХ + е- → AZ-1 У + v- + рентгеновское излучение;


4019К + е- → Аr + v-+ рентгеновское излучение;


6429Сu + е- → 6428 Ni+v- + рентгеновское излучение.


Электронный К-захват характерен для 25% всех радиоактивных ядер, но в основном для искусственных радиоактивных изотопов, расположенных в другой половине таблицы Д.И. Менделеева и имеющих излишек протонов (Z = 45 - 105). Только три естественных элемента претерпевают К-захват: калий-40, лантан-139, лютеций-176 (4019K, 15957La, 17671Lu).


Некоторые ядра могут распадаться двумя или тремя способами: путем альфа- и бета-распада и К-захвата.


Калий-40 подвергается, как уже отмечалось, электронному распаду - 88%, и К-захвату - 12%. Медь-64 (6428Сu) превращается в никель (позитронный распад - 19%, К-захват - 42%; (электронный распад - 39%).


3. Испускание γ-излучения не является видом радиоактивного распада (при этом не происходит превращение элементов), а представляет собой поток электромагнитных волн, возникающих при альфа- и бета-распаде ядер атомов (как естественных, так и искусственных радиоактивных изотопов), когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета- частицей). Этот избыток мгновенно высвечивается в виде гамма-квантов.


13153I → 13154Xe + e- +v- +2γ кванта; 22688Ra → 42He + 22286Rn + γ квант.


4. - испускание протона из ядра в основном состоянии. Этот процесс может наблюдаться у искусственно полученных ядер с большим дефицитом нейтронов:


лютеций - 151 (15171Lu) - в нем на 24 нейтрона меньше, чем в стабильном изотопе 17671Lu.

Начнем знакомство с разными вариантами распада нестабильных ядер - и с разными способами удерживать ядро от мгновенного развала - с альфа-распада. Альфа-частица - это просто ядро атома гелия, два протона и два нейтрона. Такая комбинация скреплена ядерными силами особенно крепко. Поэтому если уж тяжелое ядро и готово потерять лишние протоны и нейтроны, то они, как правило, вылетают именно в форме альфа-частицы. Этот процесс и называется альфа-распадом.

Вообще-то, ядро просто так альфа-частицу не отпустит: всё-таки между ними действуют ядерные силы притяжения. Вот если бы частица уже оторвалась от ядра и отошла бы на заметное расстояние, то тогда бы силы электрического отталкивания между ними развели бы их прочь. Но проникнуть в эту область просто так не получится - на пути к свободе альфа-частице надо как-то преодолеть высокий и широкий барьер потенциальной энергии. Он не пускает частицу и тем самым предотвращает моментальный альфа-распад ядра. Альфа-частица словно мечется в ядре, постоянно натыкаясь на потенциальный барьер.

По счастью, в квантовой механике частицы не локализованы, а немножко размазаны в пространстве. Поэтому с какой-то пусть очень маленькой, но всё же ненулевой вероятностью альфа-частица рано или поздно сможет оказаться по ту сторону барьера. Частица туннелирует, проходит потенциальный барьер насквозь, несмотря на то, что ей не хватает энергии переползти этот барьер поверху. И вот теперь, наконец-то оказавшись по ту сторону барьера, частица чувствует только электрическое отталкивание и с удовольствием улетает прочь.

Время жизни ядра, готового к альфа-распаду, определяется свойствами этого барьера. Чем выше и шире барьер, тем меньше вероятность просочиться наружу, а значит, тем дольше придется ждать для того, чтобы альфа-распад произошел. В одних случаях барьер очень труднопреодолимый, и время жизни ядра получается безумно большим, вплоть до миллиардов лет. В других случаях барьер оказывается хиленьким, и распад происходит очень быстро. Например, самое простое ядро, способное испытывать альфа-распад - бериллий-8, 8 Be - содержит четыре протона и четыре нейтрона, и потому оно с огромным удовольствием распадается на две альфа-частицы. Его время жизни было измерено полвека назад и составляет 10 −16 с = 100 ас . Заметьте, что это хоть и быстрый распад, но по ядерным масштабам он всё-таки занимает порядка миллиона типичных ядерных циклов.

Между прочим, тот факт, что ядро 8 Be настолько нестабильно, имеет огромное значение для синтеза химических элементов во Вселенной и в конечном итоге - для жизни! В недрах звезд водород постепенно сгорает и превращается в гелий. Ядра гелия, альфа-частицы, постоянно летают, сталкиваются друг с другом и время от времени образуют бериллий-8. Если бы это ядро было стабильным или хотя бы долгоживущим, то на него быстро налипли бы новые альфа-частицы, получился бы углерод, азот и так далее. Иными словами, весь гелий бы очень быстро выгорел. В реальности же 8 Be распадается столь быстро, что редко когда в него успевает воткнуться еще одна альфа-частица. Именно поэтому гелий в звездах так просто не горит. Лишь на очень поздних этапах, когда давление в звезде повышается, процесс тройного превращения альфа-частиц в углерод через промежуточный бериллий-8 запускается на полную катушку.

Альфа-распад - распад атомных ядер, сопровождающийся испусканием альфа-частиц (ядер 4 He).
Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными . Альфа-радиоактивность за редким исключением (например 8 Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z 2), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A.
Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергии

которая называется энергией альфа-распада . Ядра могут испытывать альфа-распад также на возбужденные состояния конечных ядер и из возбужденных состояний начальных ядер. Поэтому соотношение для энергии альфа-распада (2) можно обобщить следующим образом

Q α = (M(A,Z) - M(A-4,Z-2) - M α) с 2 + - ,

где и - энергии возбуждения начального и конечного ядер соответственно. Альфа-частицы, возникающие в результате распада возбужденных состояний, получили название длиннопробежных . Для большинства ядер с A > 190 и для многих ядер с 150 < A < 190 условие (12) выполняется, однако далеко не все они считаются альфа-радиоактивными. Дело в том, что современные экспериментальные возможности не позволяют обнаружить альфа-радиоактивность для нуклидов с периодом полураспада большим, чем 10 16 лет. Кроме того, часть “потенциально” альфа-радиоактивных ядер испытывают также бета-распад, который сильно конкурирует с альфа-распадом.
Основную часть энергии альфа-распада (около 98%) уносят альфа-частицы. Используя законы сохранения энергии и импульса для кинетической энергии альфа-частицы T α можно получить соотношение

Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0.298 мкс для 212 Po до >10 15 лет для 144 Nd, 174 Hf... Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4 - 9 МэВ, ядрами редкоземельных элементов 2 - 4.5 МэВ.
Важным свойством альфа-распада является то, что при небольшом изменении энергии альфа-частиц периоды полураспада меняются на многие порядки. Так у 232 Th Q α = 4.08 МэВ, T 1/2 = 1.41·10 10 лет, а у 218 Th Q α = 9.85 МэВ, T 1/2 = 10 мкс. Изменению энергии в 2 раза соответствует изменение в периоде полураспада на 24 порядка.
Для четно-четных изотопов одного элемента зависимость периода полураспада от энергии альфа-распада хорошо описывается эмпирическим законом Гейгера - Неттола

где T 1/2 в сек, Q α в МэВ. На рис. 1 показаны экспериментальные значения периодов полураспада для 119 альфа-радиоактивных четно-четных ядер (Z от 74 до 106) и их описание с помощью соотношения (6).


Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но их периоды полураспада в 2 - 1000 раз больше, чем для четно-четных ядер с данными Z и Q α .
Основные особенности альфа-распада, в частности сильную зависимость вероятности альфа-распада от энергии удалось в 1928 г. объяснить Г. Гамову и независимо от него Р. Герни и Э. Кондону . Ими было показано, что вероятность альфа-распада в основном определяется вероятностью прохождения альфа-частицы сквозь потенциальный барьер.
Рассмотрим простую модель альфа-распада. Предполагается, что альфа-частица движется в сферической области радиуса R, где R - радиус ядра. Т.е. в этой модели предполагается, что альфа-частица постоянно существует в ядре.
Вероятность альфа-распада равна произведению вероятности найти альфа-частицу на границе ядра f на вероятность ee прохождения через потенциальный барьер D (прозрачность барьера)

Можно отожествить f с числом соударений в единицу времени, которые испытывает альфа-частица о внутренние границы барьера, тогда

где v, T a , a - скорость внутри ядра, кинетическая энергия и приведенная масса альфа-частицы, V 0 - ядерный потенциал. Подставив в выражение (8) V 0 = 35 МэВ, T a = 5 МэВ, получим для ядер с A 200, f 10 21 с -1 .
Hа рис.2 показана зависимость потенциальной энергии между альфа-частицей и остаточным ядром от расстояния между их центрами. Кулоновский потенциал обрезается на расстоянии R, которое приблизительно равно радиусу остаточного ядра. Высота кулоновского барьера B k определяется соотношением

МэВ

Здесь Z и z - заряды (в единицах заряда электрона e) остаточного ядра и альфа-частицы соответственно. Например для 238 U B k 30 МэВ.

Можно выделить три области.

  1. r < R - сферическая потенциальная яма глубиной V. В классической механике альфа-частица с кинетической энергией T a + V 0 может двигаться в этой области, но не способна ее покинуть. В этой области существенно сильное взаимодействие между альфа-частицей и остаточным ядром.
  2. R < r < r e - область потенциального барьера, в которой потенциальная энергия больше энергии альфа-частицы, т.е. это область запрещенная для классической частицы.
  3. r > r e - область вне потенциального барьера. В квантовой механике возможно прохождение альфа-частицы сквозь барьер (туннелирование), однако вероятность этого весьма мала.


Рис. 5

(Аналогично влияние кулоновского барьера и в случае ядерной реакции, когда альфа-частица подлетает к ядру. Если ее энергия меньше высоты кулоновского барьера, она скорее всего рассеется кулоновским полем ядра, не проникнув в него и не вызвав ядерной реакции. Вероятность таких подбарьерных реакций очень мала.)