Механическая энергия. Закон сохранения механической энергии. Применение закона. Превращение энергии: закон сохранения энергии

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называют полной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Билет 11

Выражение кинетического момента тела с одной неподвижной точкой через матрицу моментов инерции тела.

Имеет твердое тело, одна из точек которого закреплена. Движение тела рассматривается относительно некоторой системы координат О xyz .

Кинетически момент относительно неподвижной точки:

Где r k - радиус-вектор какой-либо точки тела. m k -масса точки. V k - скорость этой точки относительно выбранной системы отсчета.

формула эйлера

В проекциях на оси:

Для проекции кинетического момента на ось O x с учетом(2’) имеем:

Суммы в (1’) представляют собой соответственно осевой и центробежные моменты инерции. Получаем:

По (3)вычисляются проекции на оси координат кинетического момента тела относительно его закрепленной точки. Кинетический момент по проекциям определяется по формуле:

Для неподвижных осей осевые и центробежные моменты инерции изменяются при вращении тела и, следовательно, зависят от времени вследствие изменения положения тела относительно этих осей.

Если применить тензор инерции:

И учесть правило умножения тензора на вектор столбец омега, то можно кратко выразить формулой: .

Упрощаем формулу (3)для проекций:

В этом случае проекции кинетического момента вычисляются так же, как и в случае, если бы каждая из главных осей инерции была неподвижной осью вращения тела. Главные оси инерции для неподвижной точки О обычно подвижные оси, скрепленные с самим вращающимся телом. Только такие оси могут быть главными в течении всего времени вращения тела. Другие подвижные или неподвижные оси могут быть главными только в отдельные моменты времени.

Кинетическая энергия поступательного движения

Кинетической энергией системы называется скалярная величина Т, равная арифметиче­ской сумме кинетических энергий всех точек системы

Кинетическая энергия является характеристикой и поступатель­ного и вращательного движения системы, поэтому теоремой об изме­нении кинетической энергии особенно часто пользуются при решении задач.

Если система состоит из нескольких тел, то ее кинетическая энергия равна, очевидно, сумме кинетических энергий этих тел:

Кинетическая энергия – скалярная и всегда положительная величина.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение . В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки

Таким образом, кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

Билет 12

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

Дифференциальное уравнение имеет вид:

, (2.6)

где – угловое ускорение тела.

Уравнение (2.6) получается из уравнения (2.4) теоремы путём подстановки в него формулы (2.3).

(2.3)

(2.4)

Интегрируя уравнение (2.6), можно определить закон вращения тела. Методика решения подобных задач:

– изображаем тело в произвольном положении; показываем внешние силы, действующие на тело; показываем ось , направленную по оси вращения тела в ту сторону, откуда вращение видно происходящим против часовой стрелки;

– находим сумму моментов внешних сил относительно оси ;

– вычисляем, если не задан, момент инерции тела ;

– составляем уравнение (2.6), интегрируя это уравнение, определяем закон вращения тела.

ПОТЕНЦИАЛЬНЫЕ СИЛЫ

Поле сил, остающееся постоянным во времени, называется стационарным. В стационарном силовом поле сила, действующая на частицу, зависит только от ее положения. Работа, которую совершают силы поля при перемещении частицы из точки 1 в точку 2, зависит, вообще говоря, от траектории, по которой перемещается частица из начального положения в конечное. Вместе с тем, имеются стационарные силовые поля, в которых работа, совершаемая над частицами силами поля, не зависит от формы траектории между точками 1 и 2. Силы, обладающие таким свойством, называются потенциальными или консервативными, а соответствующее поле сил – потенциальным полем. Примером потенциальных сил являются упругие силы, сила тяжести.

билет 13 1.Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П. Рассмотрим сечение тела какой-нибудь плоскостью OXY, параллельной неподвижной плоскости П (рис.1).При плоскопараллельном движении все точки тела, лежащие на прямой , перпендикулярной к сечению, т.е. к плоскости П, движутся тождественно. Поэтому для изучения движения всего тела достаточно изучить, как движется сечение тела в плоскости OXY. В дальнейшем будем плоскость OXY совмещать с плоскостью рисунка, а вместо всего тела изображать только его сечение. Положение сечения в плоскости OXY определяется положением какого-нибудь проведенного в этом сечении отрезка АВ (рис.2). Положение отрезка АВ можно определить, зная координаты точки А и угол , который от-резок АВ образует с осью x. Точку А, выбранную для определения положения сечения, называют полюсом. При движении тела величины и будут меняться: (1.74) Уравнения определяющие закон происходящего движения, называются уравнениями плоскопараллельного движения твердого тела. 2.Главный момент всех внутренних сил системы(относительно всякого выбранного центра) в любой момент времени равен нулю (M O i =0).M-вектор. или . Уравновешенными внутренние силы будут тогда, когда рассматриваемая система представляет собою абсолютно твердое тело. Действительно, если взять произвольный центр О , то из рис. видно, что . билет 14 1.Кинетической энергией системы называют сумму кинетических энергий всех материальных точек, входящих в систему; при поступательном движении: E=mV 2 /2; при вращении вокруг неподвижной оси : E=I Z v 2 /2; при плоскопараллельном движении : E=mV C 2 /2-I Z v 2 /2, где V C -скорость центра масс,v-угловая скорость. Кинетическая энергия механической системы есть энергия движения центра масс плюс энергия движения относительно центра масс: E=E 0 +E R , где E-полная кинетическая энергия системы, E 0- кинетическая энергия движения центра масс, E R -относительная кинетическая энергия системы. Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы в её сферическом движении относительно центра масс. 2.Степени свободы - это совокупность независимых координат перемещения и/или вращения, полностью определяющая положение системы или тела (а вместе с их производными по времени - соответствующими скоростями - полностью определяющая состояние механической системы или тела - то есть их положение и движение). Обобщенными координатами (о.к.) системы называют такие величины, которые обобщают несколько независимых декартовых координат в углы, линейные расстояния, площади. Удобство состоит в том, что о.к. можно выбирать с учетом наложенных связей, т.е. сообразуясь с характером движения, допускаемого для системы всей совокупностью наложенных связей.

Билет

1) Для внутренних сил механической системы имеет место свойство: главный вектор и главный момент внутренних сил механической системы равны нулю.

.

Это следует из того, что внутренние силы есть силы взаимодействия между точками системы, которые попарно равны и направлены в противоположные стороны.

2) Если все силы системы потенциальны, то обобщенные силы системы выражаются через потенциальную энергию системы как Q j = -дП / дq j , а уравнения Лагранжа второго рода запишутся в виде

Так как потенциальная энергия не зависит от обобщенных скоростей, то. Введем в рассмотрение функцию

Билет 16.

1. Tеорема об изменении кинетической энергии механической системы в дифференциальной форме

Изменение кинетической энергии механической системы на некотором ее перемещении равно сумме работ внешних и внутренних сил, приложенных к точкам системы, на том же перемещении.

2. Удерживающие и стационарные связи

Если функция зависит явно от времени, то говорят, что связь - нестационарная или реономная ; если же эта функция не зависит явно от времени, то говорят, что эта связь -стационарная или склерономная .

Если связь задаётся равенством, то говорят, что такая связь - удерживающая или двусторонняя :

Билет 17

1 Tеорема об изменении кинетической энергии механической системы

Кинетической энергией системы называют сумму кинетических энергий всех тел, входящих в систему. Для определённой таким образом величины справедливо утверждение:

Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.

2 Голономные связи

Голоно́мная связь - механическая связь, налагающая ограничения только на положения (или перемещения) точек и тел системы.

Математически выражается в виде равенства:

Билет 18

1.Принцип Эйлера-Даламбера для материальной точки

Согласно данному принципу, для каждой i-той точки системы верно равенство , где - действующая на эту точку активная сила, - реакция наложенной на точку связи, - сила инерции, численно равная произведению массы точки на её ускорение и направленная противоположно этому ускорению ()

2 кинетическая энергия тела при плоском движении

Билет 19

Уравнения кинетостатики.

Кинетостатика - раздел механики, в котором рассматриваются способы решения динамических задач с помощью аналитических или графических методов статики. В основе К. лежит Д"Аламбера принцип, согласно которому уравнения движения тел можно составлять в форме уравнений статики, если к фактически действующим на тело силам и реакциям связей присоединить силы инерции. Методы К. находят применение при решении ряда динамических задач, особенно в динамике машин и механизмов.

уравнения кинетостатики для материальной точки :

где F, R, Ф - главные векторы активных сил, реакций связей и сил инерции;

Fz, Rz, Ф z - главные моменты активных сил, реакций связей и сил инерции относительно точки О 1

Закон сохранения механической энергии связывает между собой разные виды энергии, рассмотрим их подробнее. Выясним и возможности его практического применения.

Особенности физической системы

Математическая формулировка закона сохранения механической энергии связывает кинетическую и потенциальную энергию.

Суть закона заключается в том, что допускается превращение одной формы в иной вид, при этом суммарное значение остается неизменной величиной. В разных разделах физики есть свои формулировки данного закона. Например, в термодинамике выделяют первое начало, в классической механике используют закон сохранения, а в электродинамике расчеты проводят на основе теоремы Пойнтинга.

Фундаментальный смысл

Как определяется механическая энергия? Закон сохранения механической энергии объясняют теоремой Нетер. Она объясняет независимость закона относительно временных рамок, иных основополагающих принципов механики. Ньютоновская теория характеризуется использованием частного случая закона сохранения энергии.

Как можно качественно описать данный закон? Сумма потенциальной и кинетической форм в замкнутой системе сохраняется неизменной.

Если на систему не действуют иные силы, в таком случае не наблюдается ее исчезновения, а также появления. Как осуществлялось обоснование закона сохранения механической энергии? Лабораторная деятельность многих ученых основывалась на изучении перехода кинетической энергии в потенциальный вид. Например, при анализе состояния математического маятника удалось подтвердить неизменность суммарного значения двух видов.

Основы термодинамики

Как рассчитывается механическая энергия? Закон сохранения механической энергии можно применить к первому началу термодинамики. Рассматривается изменение внутренней энергии системы в процессе ее перехода из одного состояния в иное через сумму количества теплоты, передаваемого системе, и работы внешних сил.

Закон сохранения импульса и механической энергии поясняет сложность получения двигателя, работающего постоянно.

Изучение свойств жидкостей

Для гидродинамики идеальных жидкостей было выведено уравнение Бернулли. Суть его в постоянстве жидкости, имеющей однородную плотность.

Как изучалась механическая энергия? Закон сохранения механической энергии был определен экспериментальным путем. Гей-Люссак в начале 19 века пытался найти зависимость между расширением газа и его теплоемкостью. Ему удалось установить неизменность температуры в рассматриваемом процессе.

История появления закона

В 19 веке, после опытов М. Фарадея, была выявлена зависимость между разными видами материи. Именно эти исследования стали основой для появления закона сохранения. Что такое полная механическая энергия? Закон сохранения энергии назван результатом опытов, проведенных французским физиком Сади Карно. Он пытался экспериментальным путем определить зависимость между работой, совершенной над системой, и выделяющимся количеством теплоты.

Именно Карно удалось установить зависимость между теплом и работой, то есть сформулировать первое начало термодинамики на основе закона сохранения. Джеймс Прескотт Джоуль провел серию классических опытов, направленных на количественное определение теплоты, выделяющейся при вращении в электромагнитном поле соленоида с металлическим сердечником.

Ему удалось установить, что количество теплоты, выделяемой в экспериментах, прямо пропорционально значению тока, взятому в квадрате. В последующих экспериментах Джоуль поменял катушку на груз, падающий с некоторой высоты. Ученому удалось установить зависимость между величиной выделяемого тепла и математическим показателем энергии груза.

Роберт Майер предложил интересную гипотезу универсального применения закона сохранения энергии. Занимаясь изучением функционирования систем человека, немецкий врач решил проанализировать то количество теплоты, которое организм выделяет по мере переработки пищи. Его интересовала величина работы, совершаемой в этом случае. Майеру удалось установить связь между теплом, работой, подтверждающую возможность использования закона сохранения энергии для процессов, происходящих внутри организма человека.

Герман Гельмгольц дал первую характеристику потенциальной энергии, основываясь на исследованиях Джоуля и Майера. Он в своих рассуждениях базировался на связи кинетической (живой) энергии с силами напряжения (потенциальной энергии).

Заключение

Закон, поясняющий неизменность суммарного показателя нескольких видов энергии, присущих для рассматриваемой системы, сохраняет свою актуальность и в настоящее время. Открытие закона способствовало развитию физических наук, стало отправной точкой для инновационных процессов, рассматриваемых в науке и технике. Именно изучение закона сохранения механической энергии, лабораторная практика стали детальным обоснованием единства живой природы.

Он указывает на закономерность перехода одной формы в другую, раскрывает глубину внутренних связей между формами материи. Любое явление, происходящее в живой и неживой природе, легко можно объяснить с помощью данного закона. В школьной программе уделяется особое внимание выводу математической записи связи между разными видами движения, рассматриваются основы термодинамической системы. На едином государственном экзамене по физике предлагаются задачи, предполагающие использование данного соотношения.

Процессы, которые происходят в Солнечной системе, связанные с изменением положения тел за определенный промежуток времени, могут быть объяснены с точки зрения основных физических правил. Переход из кинетической в потенциальную форму актуален при изучении механического движения тел. Зная, что суммарный показатель будет постоянным, можно проводить математические вычисления.

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.

Закон сохранения механической энергии.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна разности потенциальной энергии:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно:

Или . (5.16)

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Сумма E = E k + E p есть полная механическая энергия. Получили закон сохранения полной механической энергии :

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Статика. Равнодействующая сила. Момент силы. Условия равновесия материальной точки и твердого тела.Границы применимости классической механики.

В начале этой главы мы говори­ли, что энергия, как и импульс, сохраняется. Однако когда мы рас­сматривали кинетическую и потен­циальную энергии, об их сохранении ничего не говорилось. В чем же состоит закон сохранения энергии?

Рассмотрим, как изменяется энер­гия тел, взаимодействующих только друг с другом. Такие системы, как мы знаем, называются замкнутыми. Такая система может обладать и кинетической и потенциальной энер­гией. Кинетической - потому, что тела системы могут двигаться, по­тенциальной - потому, что тела сис­темы взаимодействуют друг с другом. И та и другая энергия системы может изменяться с течением вре­мени.

Обозначим через E р1 потенциаль­ную энергию системы в какой-то момент времени, а через E k 1 общую кинетическую энергию системы тел в тот же момент времени. Потен­циальную и кинетическую энергии этих же тел в какой-нибудь другой момент времени обозначим соответ­ственно через Е Р2 и E k 2

В предыдущих параграфах мы установили, что, когда тела взаимо­действуют друг с другом силами тяжести или упругости, совершенная этими силами работа равна взятому с противоположным знаком изме­нению потенциальной энергии тел системы:


С другой стороны, согласно тео­реме о кинетической энергии, эта же работа равна изменению кинети­ческой энергии:

A = E k2 – E k1 (2)

Энергия превращается из одного вида в другой.

В левых частях равенств (1) и (2) стоит одна и та же величина - работа сил взаимо­действия тел системы. Значит, и правые части равны друг другу:

E k2 - E k 1 = - (Ep 2 - Ep 1). (3)

Из этого равенства видно, что кинетическая и потенциальная энер­гия в результате взаимодействия и движения тел изменяется так, что увеличение одной из них равно уменьшению другой. На сколько одна из них возрастает, на столько другая уменьшается. Дело выглядит так, как будто бы происходит превращение одного вида энергии в другой. В этом состоит важная особенность величины, называемой энергией: есть различные формы энергии, и они могут превращаться одна в другую. Но ни об одной из них нельзя сказать, что она сохраняется.

Полная механическая энергия. Закон сохранения полной механи­ческой энергии.

Если из двух видов энергии один уменьшается ровно на столько, на сколько увеличивается другой, то это значит, что сумма энергий обоих видов остается неиз­менной. Это видно из формулы (3), которую можно переписать так:

E k 2 + Ep 2 = E k 1 + Ep 1 . (4)

В левой части равенства мы видим сумму кинетической и потен­циальной энергий системы тел в ка­кой-то момент времени, в правой - ту же сумму в другой момент времени. Эта сумма называется полной механической энергией систе­мы. Для системы тел, в которой действует сила тяжести, например для системы «Земля - падающее тело» или «Земля - тело, брошенное вверх», она равна mgh+mv 2 /2 .



Если между телами системы действует сила упругости, то полная механи­ческая энергия запишется так:

kx 2 /2 + mv 2 /2

Равенство (4) означает, что пол­ная механическая энергия замкнутой системы тел остается неизменной, сохраняется. В этом состоит закон сохранения энергии.

Полная механическая энергия замкнутой системы тел, взаимодей­ствующих силами тяготения или си­лами упругости, остается неизменной при любых движениях тел системы.

Превращения энергии и работа.

Тот факт, что одна и та же работа приводит к увеличению кинетической или к такому же уменьшению по­тенциальной энергии, означает, что работа равна энергии, превратив­шейся из одного вида в другой. Мы видели, например, что поло­жительная работа силы равна умень­шению потенциальной энергии. Но, согласно закону сохранения полной энергии, потенциальная энергия не может уменьшаться, не превратив­шись в энергию кинетическую!

Закон сохранения энергии, как и закон сохранения импульса, можно использовать для решения многих механических задач. Этим способом многие задачи решаются более прос­то, чем при прямом применении законов движения.

1. Что такое полная механическая энер­гия?

2. В чем состоит закон сохранения ме­ханической энергии?

3. Выполняется ли закон сохранения ме­ханической энергии, если действуют одно­временно и сила тяжести и упругая сила?

4. Как влияет на энергию системы тел действие внешней силы? Сохраняется ли в этом случае полная механическая энергия? 5. Спутник вращается по орбите вокруг Земли. С помощью ракетного двигателя его перевели на другую орбиту. Измени­лась ли его механическая энергия?