Нетрадиционные виды электроэнергетики. Альтернативная энергетика

Где брать энергию? Не секрет, что люди рано или поздно исчерпают запасы нефти, газа, угля и даже урана, которые ещё остались на планете. Возникает вполне резонный вопрос: «Что же делать дальше? Где брать энергию?». Ведь вся наша жизнь базируется на использовании энергии. Получается, что после того как закончатся запасы углеводородов закончится и существование цивилизации?

Выход есть! Это так называемые альтернативные источники энергии. Кстати многие из них применяются, причем успешно, уже в настоящее время. Энергия ветра, приливов, солнца и геотермальные источники ─ успешно используется и преобразовывается людьми в электроэнергию. Но это так сказать .

В настоящее время, существуют сотни теорий и разработок по созданию и использованию необычных альтернативных источников энергии. Описанные в этой статье альтернативные источники энергии являются необычными только в том смысле, что они пока не стали популярными, массово не используются, непрактичны, убыточны и т.д.

Но это совсем не значит, что они не смогут эффективно применятся возможно уже в самом ближайшем будущем. Ведь та же нефть, как источник энергии была известна с древнейших времен, но только с конца времени промышленной революции, нефть смогли получить и обработать в пригодную для использования форму.

Неизвестно, что мы в будущем будем использовать для получения энергии, но традиционным источникам энергии наверняка есть альтернативы, и вполне возможно, хотя бы один из перечисленных ниже способов получения электрической энергии сможет стать распространенным и популярным.

Вот 5 необычных альтернативных источников энергии, которые вызывают реальную надежду на эффективное использование их в будущем:

Первая экспериментальная электростанция, получающая энергию из соленой воды создана компанией Statkraft в Норвегии. Электростанция для получения электроэнергии использует физический эффект - осмос. С помощью этого эффекта в результате смешивания солёной и пресной воды извлекается энергия из увеличивающейся энтропии жидкостей. затем эта энергия используется для вращения гидротурбины электрогенератора.

Разработаны демонстрационные электростанции на топливных элементах с твердооксидным электролитом мощностью до 500 кВт. Фактически в элементе происходит сжигание топлива и непосредственное превращение выделяющейся энергии в электричество. Это все равно что дизельный электрогенератор, только без дизеля и генератора. А также без дыма, шума, перегрева и с намного более высоким КПД.

Для получения электрической энергии используется термоэлектрический эффект. Это довольно старая технология, опять ставшая актуальной в наше время за счет массового использования энергосберегающих источников света и различных переносных электроприемников. Уже существуют и с успехом используются промышленные разработки, например отопительно-варочные печи, со встроенными термогенераторами, которые в процессе своей работы позволяют получать не только тепло, но и электроэнергию.

Созданы экспериментальные установки, которые позволяют получать электроэнергию за счет использования кинетической энергии - пешеходные дорожки, турникеты на железнодорожных вокзалах, специальный танцпол со встроенными в него пьезоэлектрическими генераторами. Есть идеи в ближайшем будущем создать специальные "зеленые тренажерные залы", в которых группа спортивных тренажерных велосипедов сможет, по словам производителей, генерировать до 3,6 мегаватт возобновляемой электроэнергии в год.

В данном источником энергии является специальный наногенератор, преобразующий в электрическую энергию микроколебания в человеческом теле. Устройству довольно малейших вибраций, чтобы вырабатывать электический ток, позволяющий поддерживать работоспособность мобильных устройств. Современные наногенераторы превращают любые движения и перемещения в источник энергии. Очень перспективны и интересны варианты совместного использования наногенераторов и солнечных батарей.

А что вы думаете по этому поводу? Может быть вам известны другие новые альтернативные источники электроэнергии. Поделитесь в комментариях!

Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?

Мы поможем вам разобраться с основными источниками возобновляемой энергии — в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.

«Зеленые технологии» позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница — предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной надолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор . Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 — сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 — соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 — сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • . Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • . Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • . Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 — подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.

Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Шаг #2 — изготовление испарителя

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.

Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Шаг #3 — обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.

Из одной скважины будет происходить забор воды с последующей подачей в испаритель.

Энергию подземной воды можно использовать круглогодично. На ее температуру не влияют погодные условия и времена года

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.

На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Устройство и использование ветрогенераторов

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.

Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Галерея изображений

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с.

Монтаж лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть и горизонтальные . Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы . Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими . Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги . При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти , вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор , который вырабатывает переменный ток;
  • Контроллер управления лопастями , отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи , нужны для накопления и выравнивания электрической энергии;
  • Инвертор , выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта , необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения.

При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Шаг #1 — изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево.

Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки.

Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см.

Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса.

Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Шаг #2 — изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Растяжки мачты придадут ветрогенератору дополнительную устойчивость и снизят расходы, связанные с устройством массивного фундамента, их стоимость гораздо ниже остальных типов мачт, но требуется дополнительная площадь для растяжек

Шаг #3 — переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора.

Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении.

Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.

Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Шаг #4- завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм.

Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.

Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.

Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Выводы и полезное видео по теме

Изготовление солнечной панели с пластмассовым корпусом, перечень материалов и порядок выполнения работ

Принцип работы и обзор геотермальных насосов

Переоборудование автогенератора и изготовление тихоходного ветрогенератора своими руками

Отличительной чертой альтернативных источников энергии является их экологическая чистота и безопасность.

Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников.

Ваш дом использует альтернативную энергетику в качестве источников тепла и электроэнергии? Вы самостоятельно собрали ветрогенератор или изготовили солнечные батареи? Поделитесь, пожалуйста, своим опытом в комментариях к нашей статье.

Геотермальная энергия и ее использование. Применение гидроэнергетических ресурсов. Перспективные технологии солнечной энергетики. Принцип работы ветроустановок. Энергия волн и течений. Состояние и перспективы развития альтернативной энергетики в России.

Пермский Государственный Университет

Философско-социологический факультет

Альтернативные источники энергии

и возможности их применения в России

Кафедра социологии и

политологии

Студент: Уваров П.А.

Группа: СЦГ-2 курс

Пермь, 2009

Введение

1 Понятие и основные виды альтернативной энергии

1.1 Геотермальная энергия (тепло земли)

1.2 Энергия солнца

1.3 Энергия ветра

1.4 Энергия воды

1.5 Энергия волн

1.6 Энергия течений

2. Состояние и перспективы развития альтернативной энергетики в России

Заключение

Список используемых источников

Введение

Не зря говорят: «Энергетика – хлеб промышленности». Чем более развиты промышленность и техника, тем больше энергии нужно для них. Существует даже специальное понятие – «опережающее развитие энергетики». Это значит, что ни одно промышленное предприятие, ни один новый город или просто дом нельзя построить до того, как будет определен или создан заново источник энергии, которую они станут потреблять. Вот почему по количеству добываемой и используемой энергии довольно точно можно судить о технической и экономической мощи, а проще говоря – о богатстве любого государства.

В природе запасы энергии огромны. Ее несут солнечные лучи, ветры и движущиеся массы воды, она хранится в древесине, залежах газа, нефти, каменного угля. Практически безгранична энергия, «запечатанная» в ядрах атомов вещества. Но не все ее формы пригодны для прямого использования.

За долгую историю энергетики накопилось много технических средств и способов добывания энергии и преобразования ее в нужные людям формы. Собственно, и человек-то стал человеком только тогда, когда научился получать и использовать тепловую энергию. Огонь костров зажгли первые люди, еще не понимавшие его природы, однако этот способ преобразования химической энергии в тепловую сохраняется и совершенствуется уже на протяжении тысячелетий.

К энергии собственных мускулов и огня люди добавили мускульную энергию животных. Они изобрели технику для удаления химически связанной воды из глины с помощью тепловой энергии огня – гончарные печи, в которых получали прочные керамические изделия. Конечно, процессы, происходящие при этом, человек познал только тысячелетия спустя.

Потом люди придумали мельницы – технику для преобразования энергии ветряных потоков и ветра в механическую энергии вращающегося вала. Но только с изобретением паровой машины, двигателя внутреннего сгорания, гидравлической, паровой и газовой турбин, электрических генератора и двигателя, человечество получило в свое распоряжение достаточно мощные технические устройства. Они способны преобразовать природную энергию в иные ее виды, удобные для применения и получения больших количеств работы. Поиск новых источников энергии на этом не завершился: были изобретены аккумуляторы, топливные элементы, преобразователи солнечной энергии в электрическую и – уже в середине ХХ столетия – атомные реакторы.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей более чем шестимиллиардного населения Земли становится сейчас все более насущной.

Основу современной мировой энергетики составляют тепло- и гидроэлектростанции. Однако их развитие сдерживается рядом факторов. Стоимость угля, нефти и газа, на которых работают тепловые станции, растет, а природные ресурсы этих видов топлива сокращаются. К тому же многие страны не располагают собственными топливными ресурсами или испытывают в них недостаток. В процессе производства электроэнергии на ТЭС происходит выброс вредных веществ в атмосферу. Причем если топливом служит уголь, особенно бурый, малоценный для другого вида использования и с большим содержанием ненужных примесей, выбросы достигают колоссальных размеров. И, наконец, аварии на ТЭС наносят большой ущерб природе, сопоставимый с вредом любого крупного пожара. В худшем случае такой пожар может сопровождаться взрывом с образованием облака угольной пыли или сажи.

Гидроэнергетические ресурсы в развитых странах используются практически полностью: большинство речных участков, пригодных для гидротехнического строительства, уже освоены. А какой вред причиняют природе гидроэлектростанции! Выбросов в воздух от ГЭС нет никаких, но зато вред водной среде наносит довольно большой. В первую очередь страдают рыбы, которые не могут преодолеть плотины ГЭС. На реках, где построены гидроэлектростанции, особенно если их несколько – так называемые каскады ГЭС, – резко меняется количество воды до и после плотин. На равнинных реках разливаются огромные водохранилища, и затопленные земли безвозвратно потеряны для сельского хозяйства, лесов, лугов и расселения людей. Что касается аварий на ГЭС, то в случае прорыва любой гидроэлектростанции образуется огромная волна, которая сметет все находящиеся ниже плотины ГЭС. А ведь большинство таких плотин расположено вблизи крупных городов с населением в несколько сотен тысяч жителей.

Выход из создавшегося положения виделся в развитии атомной энергетики. На конец 1989 года в мире построено и работало более 400 атомных электростанций (АЭС). Однако сегодня АЭС уже не считаются источником дешевой и экологически чистой энергией. Топливом для АЭС служит урановая руда – дорогостоящее и трудно добываемое сырье, запасы которого ограничены. К тому же строительство и эксплуатация АЭС сопряжены с большими трудностями и затратами. Лишь немногие страны сейчас продолжают строительство новых АЭС. Серьезным тормозом для дальнейшего развития атомной энергетики являются проблемы загрязнения окружающей среды. Все это дополнительно осложняет отношение к атомной энергетике. Все чаще звучат призывы, требующие отказаться от использования ядерного топлива вообще, закрыть все атомные электростанции и возвратится к производству электроэнергии на ТЭС и ГЭС, а также использовать так называемые возобновимые – малые, или «нетрадиционные», – виды получения энергии. К последним относят прежде всего установки и устройства, использующие энергию ветра, воды, солнца, геотермальную энергию, а также тепло, содержащееся в воде, воздухе и земле.

1. О сновные виды Альтернативной энергии

1.1 Геотермальная энергия (тепло земли)

Геотермальная энергия – в дословном переводе значит: земли тепловая энергия. Объём Земли составляет примерно 1085 млрд.куб.км и весь он, за исключением тонкого слоя земной коры, имеет очень высокую температуру.

Если учесть ещё и теплоемкость пород Земли, то станет ясно, что геотермальная теплота представляет собой, несомненно, самый крупный источник энергии, которым в настоящее время располагает человек. Причём это энергия в чистом виде, так как она уже существует как теплота, и поэтому для её получения не требуется сжигать топливо или создавать реакторы.

В некоторых районах природа доставляет геотермальную энергию к поверхности в виде пара или перегретой воды, вскипающей и переходящей в пар при выходе на поверхность. Природный пар можно непосредственно использовать для производства электроэнергии. Имеются также районы, где геотермальными водами из источников и скважин можно обогревать жилища и теплицы (островное государство на севере Атлантического океана -Исландия; и наши Камчатка и Курилы).

Однако в целом, особенно с учётом величины глубинного тепла Земли, использование геотермальной энергии в мире крайне ограничено.

Для производства электроэнергии с помощью геотермального пара от этого пара отделяют твёрдые частицы, пропуская его через сепаратор и затем направляют его в турбину. «Стоимость топлива» такой электростанции определяется капитальными затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом также невелика, так как последняя не имеет топки, котельной установки и дымовой трубы. В таком удобном естественном виде геотермальная энергия является экономически выгодным источником электрической энергии. К сожалению, на Земле редко встречаются поверхностные выходы природного пара или перегретых (то есть, с температурой гораздо выше 100 o С) вод, вскипающих с образованием достаточного кол-ва пара.

Валовой мировой потенциал геотермальной энергии в земной коре на глубине до 10 км оценивается в 18 000 трлн. т усл. топлива, что в 1700 раз больше мировых геологических запасов органического топлива. В России ресурсы геотермальной энергии только в верхнем слое коры глубиной 3 км составляют 180 трлн. т усл. топлива. Использование только около 0,2 % этого потенциала могло бы покрыть потребности страны в энергии. Вопрос только в рациональном, рентабельном и экологически безопасном использовании этих ресурсов. Именно из-за того, что эти условия до сих пор не соблюдались при попытках создания в стране опытных установок по использованию геотермальной энергии, мы сегодня не можем индустриально освоить такие несметные запасы энергии.

Геотермальная энергия по времени использования — наиболее старый источник альтернативной энергии. В 1994 г. в мире работало 330 блоков таких станций и здесь доминировали США (168 блоков на «месторождениях» Гейзере в долине гейзеров, Империал Вэлли и др.). Второе место занимала. Италия, но в последние годы ее обогнали КНР и Мексика. Самая большая доля используемой геотермальной энергии приходится на страны Латинской Америки, но и она составляет немного более 1%.

В России перспективными в этом смысле районами являются Камчатка и Курильские острова. С 60-х годов на Камчатке успешно работает полностью автоматизированная Паужетская ГеоТЭС мощностью 11 МВт, на Курилах — станция на о. Кунашир. Такие станции могут быть конкурентоспособны лишь в районах с высокой отпускной ценой на электроэнергию, а на Камчатке и Курилах она очень высока в силу дальности перевозок топлива и отсутствия железных дорог.

1.2 Энергия солнца

Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Сев. Технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.

Полное количество солнечной энергии, поступающей на поверхность Земли за неделю, превышает энергию всех мировых запасов нефти, газа, угля и урана. И в России наибольший теоретический потенциал, более 2000 млрд. тонн условного топлива (т.у.т.), имеет солнечная энергия. Несмотря на такой большой потенциал в новой энергетической программе России вклад возобновляемых источников энергии на 2005 г определен в очень малом объеме – 17-21 млн.т у.т. Существует широко распространенное мнение, что солнечная энергия является экзотической и ее практическое использование-дело отдаленного будущего (после 2020г). В данной работе я покажу, что это не так и что солнечная энергия является серьезной альтернативой традиционной энергетике уже в настоящее время.

Известно, что каждый год в мире потребляется столько нефти, сколько ее образуется в природных условиях за 2 млн.лет. Гигантские темпы потребления не возобновляемых энергоресурсов по относительно низкой цене, которые не отражают реальные совокупные затраты общества, по существу означают жизнь в займы, кредиты у будущих поколений, которым не будет доступна энергия по такой низкой цене. Энергосберегающие технологии для солнечного дома являются наиболее приемлемыми по экономической эффективности их использования. Их применение позволит снизить энергопотребление в домах до 60%. В качестве примера успешного применения этих технологий можно отметить проект «2000 солнечных крыш» в Германии. В США солнечные водонагреватели общей мощностью 1400 МВт установлены в 1,5 млн. домов.

При КПД солнечной электростанции (СЭС) 12% все современное потребление электроэнергии в России может быть получено от СЭС активной площадью около 4000 кв.м, что составляет 0.024% территории.

Наиболее практическое применение в мире получили гибридные солнечно-топливные электростанции с параметрами: КПД 13,9%, температура пара 371 гр.С, давление пара 100 бар, стоимость вырабатываемой электроэнергии 0,08-0,12 долл/кВт.ч, суммарная мощность в США 400 МВт при стоимости 3 долл/Вт. СЭС работает в пиковом режиме при отпускной цене за 1 кВт.ч электроэнергии в энергосистеме: с 8 до 12 час.-0,066 долл. и с 12 до 18 час.- 0,353 долл.. КПД СЭС может быть увеличен до 23% – среднего КПД системных электростанций, а стоимость электроэнергии снижена за счет комбинированной выработки электрической энергии и тепла.

Основным технологическим достижением этого проекта является создание Германской фирмой Flachglass Solartechnik GMBH технологии производства стеклянного параболоцилиндрического концентратора длиной 100 м с апертурой 5,76 м, оптическим КПД 81% и ресурсом работы 30 лет. При наличии такой технологии зеркал в России целесообразно массовое производство СЭС в южных районах, где имеются газопроводы или небольшие месторождения газа и прямая солнечная радиация превышает 50% от суммарной.

Принципиально новые типы солнечных концентратов, использующие технологию голографии, предложены ВИЭСХом.

Его главные характеристики – сочетание положительных качеств солнечных электростанций с центральным приемником модульного типа и возможность использования в качестве приемника как традиционных паронагревателей, так и солнечных элементов на основе кремния.

Одной из наиболее перспективных технологий солнечной энергетики является создание фотоэлектрических станций с солнечными элементами на основе кремния, которые преобразуют в электрическую энергию прямую и рассеянную составляющие солнечной радиации с КПД 12-15%. Лабораторные образцы имеют КПД 23%. Мировое производство солнечных элементов превышает 50 МВт в год и увеличивается ежегодно на 30%. Современный уровень производства солнечных элементов соответствует начальной фазе их использования для освещения, подъема воды, телекоммуникационных станций, питания бытовых приборов в отдельных районах и в транспортных средствах. Стоимость солнечных элементов составляет 2,5-3 долл/Вт при стоимости электроэнергии 0,25-0,56 долл/кВт.ч. Солнечные энергосистемы заменяют керосиновые лампы, свечи, сухие элементы и аккумуляторы, а при значительном удалении от энергосистемы и малой мощности нагрузки – дизельные электрогенераторы и линии электропередач.

1.3 Энергия ветра

Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумывался над тем, нельзя ли использовать энергию ветра.

Ветряные мельницы с крыльями-парусами из ткани первыми начали сооружать древние персы свыше 1,5 тыс. лет назад. В дальнейшем ветряные мельницы совершенствовались. В Европе они не только мололи муку, но и откачивали воду, сбивали масло, как, например в Голландии. Первый электрогенератор был сконструирован в Дании в 1890 г. Через 20 лет в стране работали уже сотни подобных установок.

Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологической организации, составляют 170 трлн кВт·ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: его энергия сильно рассеяна в пространстве и он непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломают ветряки.

Строительство, содержание, ремонт ветроустановок, круглосуточно работающих в любую погоду под открытым небом, стоит недешево. Ветроэлектростанция такой же мощности, как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать большую площадь. К тому же ветроэлектростанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями, создавая помехи приему телепередач в близлежащих населенных пунктах.

Принцип работы ветроустановок очень прост: лопасти, которые вращаются за счет силы ветра, через вал передают механическую энергию к электрогенератору. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается электрический ток.

Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью (тогда у нее есть груз противовес); вертикальные роторы, напоминающие разрезанную вдоль и насажанную на ось бочку; некое подобие «вставшего дыбом» вертолетного винта: наружные концы его лопастей загнуты вверх и соединены между собой. Вертикальные конструкции хороши тем, что улавливают ветер любого направления. Остальным приходится разворачиваться по ветру.

Чтобы как-то компенсировать изменчивость ветра, сооружают огромные «ветреные фермы». Ветродвигатели там стоят рядами на обширном пространстве и работают на единую сеть. На одном краю «фермы» может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком близко, чтобы они не загораживали друг друга. Поэтому ферма занимает много места. Такие фермы есть в США, во Франции, в Англии, а в Дании «ветряную ферму» разместили на прибрежном мелководье Северного моря: там она никому не мешает и ветер устойчивее, чем на суше.

Чтобы снизить зависимость от непостоянного направления и силы ветра, в систему включают маховики, частично сглаживающие порывы ветра, и разного рода аккумуляторы. Чаще всего они электрические. Но применяют также воздушные (ветряк нагнетает воздух в баллоны; выходя оттуда, его ровная струя вращает турбину с электрогенератором) и гидравлические (силой ветра вода поднимается на определенную высоту, а, падая вниз, вращает турбину). Ставят также электролизные аккумуляторы. Ветряк дает электрический ток, разлагающий воду на кислород и водород. Их запасают в баллонах и по мере необходимости сжигают в топливном элементе (т.е. в химическом реакторе, где энергия горючего превращается в электричество) либо в газовой турбине, вновь получая ток, но уже без резких колебаний напряжения, связанного с капризами ветра.

Сейчас в мире работает более 30 тыс. ветроустановок различной мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии. По мере того как ветряные электростанции окупаются, а их конструкции совершенствуются, цена воздушного электричества падает. Так, в 1993 г. во Франции себестоимость 1 кВт·ч электроэнергии, полученной на ветростанции, равнялась 40 сантимам, а к 2000 году она снизилась в 1,5 раза. Правда энергия АЭС обходится всего в 12 сантимов за 1 кВт·ч.

1.4 Энергия воды

Уровень воды на морских побережьях в течение суток меняется три раза. Такие колебания особо заметны в заливах и устьях рек, впадающих в море. Древние греки объясняли колебание уровня воды волей повелителя морей Посейдона. В XVIII в. английский физик Исаак Ньютон разгадал тайну морских приливов и отливов: огромные массы воды в мировом океане приводятся в движение силами притяжения Луны и Солнца. Через каждые 6 ч 12 мин прилив сменяется отливом. Максимальная амплитуда приливов в разных местах нашей планеты неодинакова и составляет от 4 до 20 м.

Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство ПЭС в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность ПЭС зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. ПЭС двустороннего действия способна вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами в 1-2 ч четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в Ла-Манш, где средняя амплитуда приливов составляет 8,4 м. 24 гидроагрегата ПЭС вырабатывают в среднем за год 502 млн. кВт. час электроэнергии. Для этой станции разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС на реке Ранс экономически оправдана, годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений. Электростанция входит в энергосистему Франции и эффективно используется.

В 1968 г. на Баренцевом море, недалеко от Мурманска, вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место ее строительства – Кислая Губа представляет собой узкий залив шириной 150 м и длиной 450 м. Хотя мощность Кислогубской ПЭС невелика, ее сооружение имело важное значение для дальнейших исследовательских и проектно-конструкторских работ в области использования энергии приливов.

Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется использовать также огромный потенциал Охотского моря, где местами, например на Пенжинской губе, высота приливов составляет 12,9 м, а в Гижигинской губе – 12-14 м.

Работы в этой области ведутся и за рубежом. В 1985 г. пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м

С точки зрения экологии ПЭС имеет бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной трубы Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.

1.5. Энергия волн

Идея получения электроэнергии от морских волн была изложена еще в 1935 г. советским ученым К.Э. Циолковским.

В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую. Когда буй качается по волне, уровень воды внутри него меняется. От этого воздух то выходит из него, то входит. Но движение воздуха возможно только лишь через верхнее отверстие (такова конструкция буя). А там установлена турбина, вращающаяся всегда в одном направлении независимо от того в каком направлении движется воздух. Даже довольно небольшие волны высотой 35 см заставляют турбину развивать более 2000 оборотов в минуту. Другой тип установки – что-то вроде стационарной микроэлектростанции. Внешне она похожа на ящик, установленный на опорах на небольшой глубине. Волны проникают в ящик и приводят в действие турбину. И здесь для работы достаточно совсем небольшого волнения моря. Даже волны высотой в 20 см зажигали лампочки общей мощностью 200 Вт.

В настоящее время волноэнергетические установки используются для энергопитания автономных буев, маяков, научных приборов. Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, морекультурных хозяйств. Началось промышленное использование волновой энергии. В мире уже около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с 1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт.

Создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут работать при использовании мощности около 80 кВт/м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости.

В волновых установках с пневматическими преобразователями под действием волн воздушный поток периодически изменяет свое направление на обратное. Для этих условий и разработана турбина Уэллса, ротор которой обладает выпрямляющим действием, сохраняя неизменным направление своего вращения при смене направления воздушного потока, следовательно, поддерживается неизменным и направление вращения генератора. Турбина нашла широкое применение в различных волноэнергетических установках.

Волновая энергетическая установка «Каймей» (»Морской свет») – самая мощная действующая энергетическая установка с пневматическими преобразователями – построена в Японии в 1976 г. В своей работе она использует волны высотой до 6 – 10 м. На барже длиной 80 м, шириной 12 м и водоизмещением 500 т установлены 22 воздушных камеры, открытые снизу. Каждая пара камер работает на одну турбину Уэллса. Общая мощность установки 1000 кВт. Первые испытания были проведены в 1978 – 1979 гг. близ города Цуруока. Энергия передавалась на берег по подводному кабелю длиной около 3 км. В 1985 г. в Норвегии в 46 км к северо-западу от города Берген построена промышленная волновая станция, состоящая из двух установок. Первая установка на острове Тофтесталлен работала по пневматическому принципу. Она представляла собой железобетонную камеру, заглубленную в скале; над ней была установлена стальная башня высотой 12,3 мм и диаметром 3,6 м. Входящие в камеру волны создавали изменение объема воздуха. Возникающий поток через систему клапанов приводил во вращение турбину и связанный с ней генератор мощностью 500 кВт, годовая выработка составляла 1,2 млн. кВт. ч. Зимним штормом в конце 1988 г. башня станции была разрушена. Разрабатывается проект новой башни из железобетона.

Конструкция второй установки состоит из конусовидного канала в ущелье длиной около 170 м с бетонными стенками высотой 15 м и шириной в основании 55 м, входящего в резервуар между островами, отделенный от моря дамбами, и плотины с энергетической установкой. Волны, проходя по сужающемуся каналу, увеличивают свою высоту с 1,1 до 15 м и вливаются в резервуар, уровень которого на 3 м выше уровня моря. Из резервуара вода проходит через низконапорные гидротурбины мощностью 350 кВт. Станция ежегодно производит до 2 млн. кВт.·ч электроэнергии.

А в Великобритании разрабатывается оригинальная конструкция волновой энергетической установки типа «моллюск», в которой в качестве рабочих органов используются мягкие оболочки – камеры. В них находится воздух под давлением, несколько большим атмосферного. Накатом волн камеры сжимаются, образуется замкнутый воздушный поток из камер в каркас установки и обратно. На пути потока установлены воздушные турбины Уэллса с электрогенераторами. Сейчас создается опытная плавучая установка из 6 камер, укрепленных на каркасе длиной 120 м и высотой 8 м. Ожидаемая мощность 500 кВт. Дальнейшие разработки показали, что наибольший эффект дает расположение камер по кругу. В Шотландии на озере Лох-Несс была испытана установка, состоящая из 12 камер и 8 турбин. Теоретическая мощность такой установки до 1200 кВт.

Впервые конструкция волнового плота была запатентована в СССР еще в 1926 г. В 1978 г. в Великобритании проводились испытания опытных моделей океанских электростанций, в основе которых лежит аналогичное решение. Волновой плот Коккерела состоит из шарнирно соединенных секций, перемещение которых относительно друг друга передается насосам с электрогенераторами. Вся конструкция удерживается на месте якорями. Трехсекционный волновой плот Коккерела длиной 100 м, шириной 50 м и высотой 10 м может дать мощность до 2 тыс. кВт.

В СССР модель волнового плота испытывалась в 70-х гг. на Черном море. Она имела длину 12 м, ширину поплавков 0,4 м. На волнах высотой 0,5 м и длиной 10 – 15 м установка развивала мощность 150 кВт.

Проект, известный под названием «утка Солтера», представляет собой преобразователь волновой энергии. Рабочей конструкцией является поплавок (»утка»), профиль которого рассчитан по законам гидродинамики. В проекте предусматривается монтаж большого количества крупных поплавков, последовательно укрепленных на общем валу. Под действием волн поплавки приходят в движение и возвращаются в исходное положение силой собственного веса. При этом приводятся в действие насосы внутри вала, заполненного специально подготовленной водой. Через систему труб различного диаметра создается разность давления, приводящая в движение турбины, установленные между поплавками и поднятые над поверхностью моря. Вырабатываемая электроэнергия передается по подводному кабелю. Для более эффективного распределения нагрузок на валу следует устанавливать 20 – 30 поплавков. В 1978 г. была испытана модель установки, состоявшая из 20-ти поплавков диаметром 1 м. Выработанная мощность составили 10 кВт. Разработан проект более мощной установки из 20 – 30 поплавков диаметром 15 м, укрепленных на валу, длиной 1200 м. Предполагаемая мощность установки 45 тыс. кВт. Подобные системы, установленные у западных берегов Британских островов, могут обеспечить потребности Великобритании в электроэнергии.

1.6 Энергия течений

Наиболее мощные течения океана – потенциальный источник энергии. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от 1 м 2 поперечного сечения потока составляет около 1 кВт. Перспективным представляется использование таких мощных течений, как Гольфстрим и Куросио, несущих соответственно 83 и 55 млн. куб.м/с воды со скоростью до 2 м/с, и Флоридского течения (30 млн. куб.м/с, скорость до 1,8 м/с).

Для океанской энергетики представляют интерес течения в проливах Гибралтарском, Ла-Манш, Курильских. Однако создание океанских электростанций на энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству.

Программа «Кориолис» предусматривает установку во Флоридском проливе в 30 км восточнее города Майами 242 турбин с двумя рабочими колесами диаметром 168 м, вращающимися в противоположных направлениях. Пара рабочих колес размещается внутри полой камеры из алюминия, обеспечивающей плавучесть турбины. Для повышения эффективности лопасти колес предполагается сделать достаточно гибкими. Вся система «Кориолис» общей длиной 60 км будет ориентирована по основному потоку; ширина ее при расположении турбин в 22 ряда по 11 турбин в каждом составит 30 км. Агрегаты предполагается отбуксировать к месту установки и заглубить на 30 м, чтобы не препятствовать судоходству.

После того как большая часть Южного Пассатного течения проникает в Карибское море и Мексиканский залив, вода возвращается оттуда в Атлантику через Флоридский залив. Ширина течения становится минимальной – 80 км. При этом оно убыстряет свое движение до 2 м/с. Когда же Флоридское течение усиливается Антильским, расход воды достигает максимума. Развивается сила, вполне достаточная, чтобы привести в движение турбину с размашистыми лопастями, вал которой соединен с электрогенератором. Дальше – передача тока по подводному кабелю на берег.

Материал турбины- алюминий. Срок службы – 80 лет. Ее постоянное место – под водой. Подъем на поверхность воды только для профилактического ремонта. Ее работа практически не зависит от глубины погружения и температуры воды. Лопасти вращаются медленно, и небольшие рыбы могут свободно проплывать через турбину. А вот крупным вход закрыт предохранительной сеткой.

Американские инженеры, считают, что строительство такого сооружения даже дешевле, чем возведение тепловых электростанций. Здесь не нужно возводить здание, прокладывать дороги, устраивать склады. Да и эксплуатационные расходы существенно меньше.

Полезная мощность каждой турбины с учетом затрат на эксплуатацию и потерь при передаче на берег составит 43 МВт, что позволит удовлетворить потребности штата Флориды (США) на 10%.

Первый опытный образец подобной турбины диаметром 1,5 м был испытан во Флоридском проливе. Разработан также проект турбины с рабочим колесом диаметром 12 м и мощностью 400 кВт.

2 Состояние и перспективы развития альтернативной энергетики в России

Доля традиционной топливной энергетики в мировом энергобалансе будет непрерывно сокращаться, а на смену придет нетрадиционная — альтернативная энергетика, основанная на использовании возобновляемых источников энергии. И от того, с какими темпами это произойдет в конкретной стране, зависит не только ее экономическое благополучие, но и ее независимость, ее национальная безопасность.

Ситуация с возобновимыми источниками энергии в России, как и почти со всем у нас в стране, может быть названа уникальной. Запасы этих источников, поддающихся использованию уже на сегодняшнем техническом уровне, огромны. Вот одна из оценок: солнечной лучистой энергии — 2300млрдТУТ (тонн условного топлива); ветра — 26,7млрдТУТ, биомассы — 10млрдТУТ; тепла Земли — 40000млрдТУТ; малых рек — 360млрдТУТ; морей и океанов — 30млрдТУТ. Эти источники намного превышают современный уровень энергопотребления России (1,2млрдТУТ в год). Однако используются из всего этого немыслимого изобилия даже не сказать что крохи — микроскопические количества. Как и в мире в целом, в России наиболее развита среди возобновляемых видов энергетики ветроэнергетика. Еще в 1930-хгг. в нашей стране серийно выпускалось несколько видов ветроустановок мощностью 3-4кВт, однако в 1960-егг. их выпуск был прекращен. В последние годы СССР правительство вновь обратило внимание на эту область, однако не успело реализовать своих планов. Тем не менее, с 1980 по 2006гг. Россией наработан большой научно-технический задел (но отставание в вопросах практического использования возобновимых источников энергии у России серьезное). Сегодня общая мощность действующих, сооружаемых и планируемых к вводу в России ВЭУ и ВЭС составляет 200 МВт. Мощность отдельных ветроагрегатов, изготавливаемых российскими предприятиями, лежит в диапазоне от 0,04 до 1000,0 кВт . В качестве примера приведем нескольких разработчиков и производителей ВЭУ и ВЭС. В Москве ООО «СКТБ «Искра» производит ветроэлектрические станции М-250 мощностью 250Вт. В Дубне Московской области предприятие Гос.МКБ «Радуга» производит легко устанавливаемые ВЭС в 750Вт, 1кВт и 8кВт; Санкт-Петербургский НИИ «Электроприбор» выпускает ВЭУ до 500 Вт.

В Киеве с 1999г. научно-производственная группа WindElectric производит ветроэлектростанции бытового назначения WE-1000 мощностью 1 кВт. Специалистами группы разработана уникальная многолопастная, универсально-скоростная и абсолютно бесшумная турбина небольших размеров, эффективно использующая любой воздушный поток.

Хабаровская «Компания ЛМВ Ветроэнергетика» производит ВЭС мощностью от 0,25 до 10кВт, последние могут объединяться в системы мощностью до 100кВт. С 1993г. этим предприятием разработано и произведено 640 ВЭС. Большинство установлено в Сибири, на Дальнем Востоке, Камчатке, Чукотке. Срок эксплуатации ВЭС достигает 20 лет в любых климатических зонах. Компания поставляет также солнечные батареи, которые работают совместно с ВЭС (мощность таких ветросолнечных установок составляет от 50Вт до 100 кВт).

В отношении ресурсов ветровой энергии в России наиболее перспективны такие районы, как Побережье Северного Ледовитого океана, Камчатка, Сахалин, Чукотка, Якутия, а также побережье Финского залива, Черного и Каспийского морей. Высокие среднегодовые скорости ветра, малая обеспеченность централизованными электросетями и обилие неиспользуемых в хозяйстве площадей делает эти местности практически идеальными для развития ветровой энергетики. Похожая ситуация с солнечной энергетикой. Солнечная энергия, поступающая за неделю на территорию нашей страны, превышает энергию всех российских ресурсов нефти, угля, газа и урана. Имеются интересные отечественные разработки в этой области, но нет никакой поддержки их со стороны государства и, следовательно, нет рынка фотоэнергетики. Однако объем выпуска солнечных батарей исчисляется мегаваттами. В 2006г. было произведено около 400 МВт. Имеется тенденция к некоторому росту. Впрочем, больший интерес к продукции различных научно-производственных объединений, выпускающих фотоэлементы, проявляют покупатели из-за рубежа, для россиян они все еще дороги; в частности, потому что сырье для производства кристаллических пленочных элементов приходится ввозить из-за рубежа (в советское время заводы по производству кремния находились в Киргизии и Украине) Наиболее благоприятные районы для использования солнечной энергии в России — это Северный Кавказ, Ставропольский и Краснодарский края, Астраханская область, Калмыкия, Тува, Бурятия, Читинская область, Дальний Восток.

Наибольшие достижения по использованию солнечной энергии отмечены в области создания систем теплоснабжения с применением плоских солнечных коллекторов. Первое место в России во внедрении таких систем занимает Краснодарский край, где за последние годы в соответствии с действующей краевой программой энергосбережения сооружено около сотни крупных солнечных систем горячего водоснабжения и множество мелких установок индивидуального пользования. Наибольшее развитие солнечные установки для обогрева помещений получили в Краснодарском крае и Республике Бурятия. В Бурятии солнечными коллекторами производительностью от 500 до 3000 литров горячей воды (90-100 градусов по Цельсию) в сутки оснащены различные промышленные и социальные объекты – больницы, школы, завод «Электромашина» и т.д., а также частные жилые здания. Сравнительно повышенное внимание уделяется развитию геотермальных электростанций, более, видимо, привычных нашим энергетическим распорядителям и достигающих больших мощностей, а потому лучше укладывающихся в привычную концепцию энергетического гигантизма. Специалисты считают, что запасы геотермальной энергии на Камчатке и Курильских островах могут обеспечить электростанции мощностью до 1000МВт.

Ещё в 1967г. на Камчатке была построена Паужетская ГеоТЭС мощностью 11,5МВт. Она была пятой ГеоТЭС в мире. В 1967г. была введена в действие Паратунская ГеоТЭС — первая в мире с бинарным циклом Ренкина. В настоящее время строится Мутновская ГеоТЭС мощностью 200МВт с использованием отечественного оборудования, изготовленного Калужским турбинным заводом. Этот завод приступил также к серийному выпуску модульных блоков для геотермального электро – и теплоснабжения. С использованием таких блоков Камчатка и Сахалин могут быть практически полностью обеспечены электроэнергией и теплом от геотермальных источников. Геотермальные источники с достаточно большим энергетическим потенциалом имеются в Ставропольском и Краснодарском краях. Сегодня там вклад систем геотермального теплоснабжения составляет 3млн.Гкал/год.

По мнению специалистов, при несметных запасах этого вида энергии не решен вопрос о рациональном, рентабельном и экологически безвредном использовании геотермальных ресурсов, что мешает наладить их индустриальное освоение. Например, добываемые геотермальные воды используются варварскими методами: неочищенную отработанную воду, содержащую ряд опасных веществ (ртуть, мышьяк, фенолы, серу и т.п.) сбрасывают в окружающие водоемы, нанося непоправимый вред природе. К тому же, все трубопроводы геотермальных систем отопления быстро выходят из строя из-за высокой минерализации геотермальных вод. Поэтому требуется коренной пересмотр технологии использования геотермальной энергии.

Сейчас ведущим предприятием по изготовлению геотермальных электрических станций в России является Калужский турбинный завод и АО «Наука», которые разработали и производят модульные геотермальные электростанции мощностью от 0,5 до 25 МВт. Разработана и начала реализовываться программа создания геотермального энергоснабжения Камчатки, в результате которой ежегодно будет сэкономлено около 900тыс. ТУТ. На Кубани эксплуатируется 10 месторождений геотермальных вод. За 1999-2000гг. уровень добычи теплоэнергетических вод в крае составил около 9млнм3, что позволило сэкономить до 65тыс.ТУТ. Предприятием «Турбокон», созданным при Калужском турбинном заводе, разработана чрезвычайно перспективная технология, позволяющая получать электроэнергию из горячей воды, испаряющейся под давлением и вращающей турбину, оснащенную вместо привычных лопастей специальными воронками — так называемыми соплами Лаваля. Польза от таких установок, получивших название гидропаровых турбин, как минимум двойная. Во-первых, они позволяют полнее использовать геотермальную энергию. Обычно для получения энергии используется только геотермальный пар или растворенные в геотермальной воде горючие газы, тогда как с помощью гидропаровой турбины для получения энергии можно использовать и непосредственно горячую воду. Другой возможный вариант применения новой турбины — получение электроэнергии в городских теплосетях, из воды, возвращающейся от потребителей тепла. Сейчас тепло этой воды пропадает впустую, тогда, как оно могло бы обеспечивать котельные независимым источником электричества.

Тепло недр Земли способно не только выбрасывать в воздух фонтаны гейзеров, но и согревать жилища и вырабатывать электроэнергию. Большими геотермальными ресурсами обладают Камчатка, Чукотка, Курилы, Приморский край, Западная Сибирь, Северный Кавказ, Краснодарский и Ставропольский края, Калининградская область. Высокопотенциальное термальное тепло (пароводная смесь свыше 100 градусов по Цельсию) позволяет производить электроэнергию напрямую.

Обычно пароводяная термальная смесь извлекается из скважин, пробуренных на глубину 2-5 км. Каждая из скважин способна обеспечить электрическую мощность 4-8 МВт с площади геотермального месторождения около 1 км 2 . При этом по экологическим соображениям необходимо иметь и скважины для закачки в пласт отработанных геотермальных вод.

В настоящее время на Камчатке действуют 3 геотермальных электростанции: Паужетская ГеоЭС, Верхне-Мутновская ГеоЭС и Мутновская ГеоЭС. Суммарная мощность этих геотермальных электростанций составляет более 70 МВт. Это позволяет на 25% обеспечить потребности региона в электроэнергии и ослабить зависимость от поставок дорогостоящего привозного мазута.

В Сахалинской области на о. Кунашир введены первый агрегат мощностью 1,8 МВт Менделеевской ГеоТЭС и геотермальная тепловая станция ГТС-700 мощностью 17 Гкал/ч. Большая часть низкопотенциальной геотермальной энергии применяется в виде тепла в жилищно-коммунальном и сельском хозяйствах. Так, на Кавказе общая площадь обогреваемых геотермальными водами теплиц составляет свыше 70 га. В Москве построен и успешно эксплуатируется экспериментальный многоэтажный дом, в котором горячая вода для бытовых нужд нагревается за счет низкопотенциального тепла Земли.

Наконец, следует также упомянуть малые гидроэлектростанции. С ними дело обстоит относительно благополучно в плане конструкторских разработок: оборудование для малых ГЭС выпускается или готово к выпуску на многих предприятиях энергомашиностроительной промышленности, с гидротурбинами различной конструкции — осевыми, радиально-осевыми, пропеллерными, диагональными, ковшовыми. При этом стоимость оборудования, изготовленного на отечественных предприятиях, остается значительно ниже мирового уровня цен. На Кубани ведется строительство двух малых ГЭС (МГЭС) на р. Бешенка в районе п.Красная Поляна г.Сочи и сбросе циркуляционной системы технического водоснабжения Краснодарской ТЭЦ. Запланировано строительство МГЭС на сбросе Краснодарского водохранилища мощностью 50 МВт. Начата работа по восстановлению системы малых ГЭС в Ленинградской области. В 1970-е гг. там, в результате проведения кампании по укрупнению электроснабжения области, прекратили работу более 40 таких станций. Плоды недальновидной гигантомании приходится исправлять сейчас, когда необходимость в малых источниках энергии стала очевидной.

Заключение

Нужно отметить, что в России ещё нет таких законов, которые бы регулировали альтернативную энергетику и стимулировали ее развитие. Равно как и нет структуры, которая бы защищала интересы альтернативной энергетики. Как, например, атомной энергетикой отдельно занимается Минатом. Запланирован доклад правительству об обосновании необходимости и разработке концепции проекта федерального закона «О развитии возобновляемых источников энергии». За подготовку этого доклада отвечают целых четыре министерства: Минэнерго, Минэкономразвития, Минпромнауки и Минюст. Когда они договорятся, неведомо.

Чтобы отрасль развивалась быстро и полноценно, закон должен предусматривать налоговые льготы предприятиям, производящим оборудование для получения энергии возобновляемых источников (например, снижение ставки НДС хотя бы до 10%). Важны также вопросы сертификации и лицензирования (прежде всего в том, что касается оборудования), потому что приоритет возобновляемой энергии также должен соответствовать требованиям качества.

Развитие альтернативных способов получения энергии тормозят производители и добытчики традиционных источников энергии: у них сильные позиции во власти и есть возможность отстаивать свои интересы. Альтернативная энергия до сих пор довольно дорога по сравнению с традиционной, потому что практически у всех предприятий-производителей установки выходят опытными партиями в очень небольших количествах и соответственно являются очень дорогими. Организация серийного производства и проведение сертификации установок требуют значительных инвестиций, которые полностью отсутствуют. Удешевлению стоимости могла бы способствовать господдержка. Однако же это противоречит интересам тех, чей бизнес основан на добыче традиционного углеводородного топлива. Лишняя конкуренция никому не нужна.

В результате преимущественному использованию возобновляемых источников и развитию альтернативной энергетики отдается предпочтение в основном в тех регионах, где это является наиболее очевидным решением сложившихся энергетических проблем. Россия располагает значительными ресурсами ветровой энергии, в том числе в тех регионах, где отсутствует централизованное электроснабжение – побережье Северного Ледовитого океана, Якутия, Камчатка, Чукотка, Сахалин, но даже в этих районах энергетические проблемы таким образом решать почти не пытаются.

О дальнейшем развитии альтернативной энергетики говорится в «Энергетической стратегии России на период до 2020 года». Цифры, которых должна достичь наша альтернативная энергетика, очень низки, задачи минимальны, поэтому перелома в российской энергетике ждать не приходится. За счет альтернативной энергетики к 2020 году планируется экономить меньше 1% всех топливных ресурсов. Приоритетом своей «энергетической стратегии» Россия выбирает атомную промышленность как «важнейшую часть энергетики страны».

В последнее время были предприняты некоторые шаги в сторону развития альтернативной возобновляемой энергетики. Минэнерго начало переговоры с французами о перспективах сотрудничества в области альтернативной энергетики. В целом же можно отметить, что состояние и перспективы развития альтернативной энергетики на ближайшие 10-15 лет в целом представляются плачевными.

Список используемых источников

1. Копылов В.А. География промышленности России и стран СНГ. Учебное пособие. – М.: Маркетинг, 2001 – 184 с.

2. Видяпин М.В., Степанов М.В. Экономическая география России. – М.: Инфра – М., 2002 – 533 с.

3. Морозова Т.Г. Экономическая география России – 2 -е изд., ред.- М.: ЮНИТИ, 2002 – 471 с.

4. Арустамов Э.А. Левакова И.В.Баркалова Н.В. Экологические основы природопользования. М. Изд. «Дашков и К». 2002.

5. В. Володин, П. Хазановский Энергия, век двадцать первый.-М 1998

6. А. Голдин «Океаны энергии». М: ЮНИТИ 2000

7. Попов В. Биосфера и проблемы ее охраны. Казань. 1981.

8. Рахилин В. общество и живая природа. М. Наука. 1989.

9. Лаврус В.С. Источники энергии К: НиТ, 1997

10. Э.Берман. Геотермальная энергия – Москва: Мир,1978г.

11. Л. С. Юдасин. Энергетика: проблемы и надежды. М: ЮНИТИ. 1999.

До недавнего времени основными источниками энергии являлись: нефть, газ, уголь, вода и древесина. Однако природные ресурсы стремительно истощаются, цены на них растут, к тому же выбросы от их переработки оказывают негативное влияние на окружающую среду. По этим причинам многие страны склоняются к внедрению и развитию инновационных решений в области энергетики, которые позволят заменить традиционные виды топлива. В данной статье мы рассмотрим, что такое альтернативные источники энергии, их виды, эффективность и перспективы применения.

Читайте в статье

Альтернативные источники энергии – что это такое

Альтернативный источник энергии (АИЭ) представляют собой экологически чистый возобновляемый ресурс, который при преобразовании позволяет получать тепло или электричество, используемые для повседневных нужд человека. К таким ресурсам следует отнести все существующие виды природных водоёмов, солнце, ветер, тепло из недр земли, биологическое топливо, а также переработанное вторсырьё. Альтернативные источники энергии, в отличие от традиционных видов, могут возобновляться неограниченное количество раз, они более эффективны, дешевле и экологически безопасны.

Возьмите на заметку:

Виды альтернативных источников энергии

В зависимости от возобновляемого ресурса современные источники энергии разделяются на несколько видов, которые определяют способы её преобразования и типы установок, предназначенных для этого. Рассмотрим кратко альтернативные источники энергии и их характеристики.


Использование альтернативных источников энергии – солнце и ветер

Преобразование энергии солнца при помощи специальных устройств позволяет получать тепло и электричество для дальнейшего использования. Электрическая энергия генерируется благодаря физическим процессам, которые происходят в кремниевых полупроводниках солнечных панелей под воздействием солнечных лучей, а тепловая – свойствам газов и жидкостей.


Использование ветра в качестве альтернативного источника энергии основано на преобразовании силы воздушных потоков в электричество при помощи специальных генераторных установок. Ветрогенераторы имеют различную конструкцию и габариты, а также отличаются и по месту расположения. Ветер приводит в движение лопасти, которые, в свою очередь, вращают генератор, вырабатывающий электроэнергию.


Вода и тепло Земли на службе человека

Силу воды для получения электроэнергии человек научился использовать уже давно. Раньше для этого строились гидроэлектростанции, которые перекрывали реки, это были как небольшие, так и грандиозные сооружения. С развитием технологий конструкции гидроэлектростанций изменились, и теперь появилась возможность получать электричество не только за счёт силы речного потока, но и благодаря приливам морей и океанов (приливные станции). Вода падает на лопасти турбин, вращающих генератор, который вырабатывает электроэнергию, поступающую к потребителю.


В недрах нашей Земли скрыты огромные запасы тепла, которые позволяют заменить более дорогостоящие и «грязные» источники энергии. Это направление называется геотермальной энергетикой, в которой используют четыре основных вида теплоресурсов:

  • поверхностное тепло земли;
  • энергия пара и горячей воды, находящиеся у поверхности земли;
  • тепло, сконцентрированное глубоко в недрах планеты;
  • энергия магмы и тепла, скапливаемого под вулканами.

Внутреннее тело земли используется для отопления домов и производства электричества. Его запасы в 35 млрд раз превышают годовую потребность в энергии во всём мире. Первая геотермальная электростанция мощностью в 7,5 МВт была введена в Италии в 1916 году. На данный момент себестоимость электроэнергии, вырабатываемой ТеоТЭС, практически равна той, что производится угольными ТЭС.


Геотермальная электростанция Хеллишейди в Исландии – хороший проект альтернативного источника электроэнергии

Биотопливо – альтернатива бензину

Биотопливо является альтернативным источником энергии, которая получается вследствие переработки органического сырья или отходов. Этот вид топлива может быть в твёрдом, жидком или газообразном состоянии. В качестве твёрдого биотоплива используется дерево, брикеты и пеллеты из её отходов древесины или сельхозпродукции (лузга подсолнечника и гречихи, ореховая скорлупа и т.д.). Данное топливо используют для выработки тепловой и электрической энергии на ТЭС.


Жидкое биотопливо получают путём переработки растительной массы определённых сельскохозяйственных культур и их отходов (солома) и используют в основном в качестве горючего для автомобилей. К этому виду экотоплива можно отнести:

  • биоэтанол;
  • биометанол;
  • биобутанол;
  • биодизель;
  • диметиловый эфир.

Газообразное экотопливо бывает трёх видов: биогаз, биоводород и метан. Его получают посредством брожения биологической массы. Сырьё подвергается воздействию особых бактерий, которые разлагают биомассу, и вследствие этого вырабатывается газ.


Развитие альтернативных источников энергии

По данным Минэнерго РФ, доля использования альтернативных источников энергии в России составляет всего лишь 1%. Планируется увеличить данный показатель к 2020 году до 4,5%, за счёт привлечения не только средств правительства Российской Федерации, но и частных предпринимателей. Развитие альтернативной энергетики имеет большой потенциал:

  • ввиду малой заселённости морских и океанских побережий Камчатки, Чукотки, Сахалина и других территорий возможно развитие ветровой и приливной энергетики;
  • актуально развитие солнечной энергетики, особенно в Ставропольском и Краснодарском крае, на Северном Кавказе, Дальнем Востоке и пр.

К сожалению, альтернативная энергетика не является приоритетным направлением российской промышленности. Основной проблемой является финансирование подобных проектов. Иногда добыча угля и нефти обходится дешевле, чем строительство ветрогенераторных и солнечных электростанций.

Альтернативные источники энергии для частного дома

Владельцы частных домов, благодаря использованию альтернативных источников энергии, могут существенно снизить расходы по коммунальным счетам или полностью отказаться от услуг поставщиков газа, электричества и тепла. Также имеется возможность не только сделать своё хозяйство энергонезависимым, но и реализовывать излишки. Государство всячески поощряет развитие и использование установок альтернативных источников энергии рядовыми гражданами. Для получения тепла и электричества при помощи нетрадиционных источников энергии можно использовать заводское оборудование или сделать его своими руками. Итак, альтернативная энергетика позволяет:

  • преобразовывать солнечную энергию в электричество или тепло для горячего водоснабжения и низкотемпературного отопления;
  • с помощью специальных генераторов получать электроэнергию, используя силу ветра;
  • с помощью специальных насосов забирать из земли, воды и воздуха тепло и отапливать дома и вырабатывать электроэнергию посредством теплогенераторов;
  • получение газа из отходов сельхозпродукции, биологических материалов и продуктов жизнедеятельности домашних животных и птиц.

Наибольшая эффективность достигается путём использования нескольких видов источника альтернативной энергии.

Солнечная энергия как альтернативный источник энергии

Использование энергии солнца позволяет получать при помощи солнечных полупроводниковых панелей и коллекторов электричество и горячую воду для отопления и ГВС. Под воздействием света на кремниевые элементы возникает направленное движение электронов (электрический ток). Соединив достаточное количество панелей, можно получить электричество, которое хватит для обеспечения нужд одного дома. Так, например, солнечная батарея площадью 1,4 м2 при хорошей освещённости выдаёт 24 В при мощности порядка 270 Вт. Поскольку солнце светит не всё время и с разной силой, то невозможно подключить бытовые приборы напрямую к преобразующим панелям. Для того чтобы пользоваться электричеством от солнечных батарей, нужна целая система, включающая в себя:

  • аккумулятор (АКБ) для накопления излишков электроэнергии (задействуется в тёмное время суток и ненастную погоду);
  • контроллер (необязателен, но рекомендован) предназначен для мониторинга уровня заряда АКБ, чтобы не допустить полной разрядки или перезаряда, а также для оптимизации работы солнечных панелей;
  • инвертор , преобразующий постоянный ток в переменный и позволяющий получить напряжение в 220−230 В.

Для того чтобы сделать дом или дачу полностью независимым от централизованного электроснабжения, необходимо установить большое количество батарей и несколько аккумуляторов. Это, конечно, недёшево, но в итоге полностью окупается за сравнительно короткий срок. Набор панелей для выработки 1500 Вт в сутки, чего хватит для обеспечения дачи или некоторых электроприборов в доме, стоит порядка 1 000 $, для производства 4 кВт – около 2 200 $, а 9 кВт – 6 200 $. Можно купить небольшую установку и впоследствии дополнить её новыми солнечными батареями, добившись требуемой мощности.


Альтернативные источники электроэнергии для частного дома – солнечные панели

Итак, мы уже рассмотрели, что солнечная энергия может использоваться для получения электроэнергии (полупроводниковые панели) и тепла для отопления и горячего водоснабжения (коллекторы). Разберём, что представляют собой солнечные батареи. Солнечная батарея состоит из определённого количества кремниевых фотоэлементов (бытовые модели). Такие панели имеют КПД в 20−24% и сравнительно невысокую стоимость. Фотоэлементы соединяются между собой, и их контакты выводятся на клеммы, находящиеся на закрытом корпусе каждой батареи. Корпус изготавливают из анодированного алюминия, а лицевую панель − из прочного стекла высокого качества и покрытого антибликовым составом.


Статья по теме:

Что такое, принципы работы и виды солнечных батарей для частного дома, стоимость комплекта, отзывы, технические характеристики, рекомендации специалистов — читайте в публикации.

Солнечные коллекторы – достойная замена традиционным водонагревателям

Солнечные теплоколлекторы позволяют накапливать 600−800 Вт/ч с одного квадратного метра и обеспечить дом достаточным количеством энергии для отопления и ГВС. Конструкционно коллекторы разделяются на следующие основные группы:

  • вакуумные . Плоские или многотрубные конструкции с естественной или принудительной циркуляцией теплоносителя в системе. В основном это стационарные коллекторы, предназначенные для сезонного использования;
  • воздушные солнечные системы , которые являются наиболее лёгкими и простыми. Тепло с нагретой поверхности коллектора снимается потоком воздуха;
  • в третьем варианте тепло от солнечных коллекторов может использоваться для трансформации его в электроэнергию.

Последний вариант не пользуется особой популярностью среди рядовых потребителей из-за сложности обслуживания и высокой стоимости оборудования.


Тепловые насосы для отопительных систем частных домов

В настоящее время для отопления домов и обеспечения их горячим водоснабжением в основном применяют различные виды котлов – твердотопливные, дизельные, газовые и электрические. Сравнительно недавно появился ещё один способ нагрева жидкости при помощи теплового насоса, но пока он ещё не получил достаточно широкого применения. Теплоноситель, двигаясь по путепроводу, проложенному в грунте на определённой глубине, нагревается на несколько градусов и поступает в испаритель. Далее нагретая жидкость отдаёт тепло хладагенту, который при низких температурах превращается в пар и поступает в компрессор. В компрессоре он сжимается, что приводит к увеличению давления и, соответственно, повышению температуры.

Сжатый нагретый хладагент перемещается в конденсатор, где отдаёт тепло другому теплоносителю (воздух, вода или антифриз). В результате этого процесса происходит охлаждение хладагента и возврат его в жидкое состояние. После этого жидкость поступает в испаритель, и весь цикл повторяется.


Принцип работы теплонасоса

Статья

Перспективы использования альтернативных источников энергии

Традиционные источники энергии становятся неактуальными. Множество причин заставляет человечество отказываться от них. Сегодня основное внимание направлено на альтернативные способы, уже применяющиеся на практике и планируемые на будущее. Исследования продолжаются, поэтому наука движется вперёд, не останавливаясь на достигнутых результатах. Сейчас можно оценить некоторые достижения, уже давшие первые результаты, чтобы понять, насколько выгодными станут новые направления через несколько лет.

Альтернативная энергия продолжает распространяться. Причиной являются её явные преимущества перед традиционными источниками, которые сложно опровергнуть. В некоторых странах правительство ведёт сложные государственные программы с колоссальными денежными вложениями для постепенной замены, но пока результаты остаются незначительными.



Какие основные виды можно выделить?
  • Энергия молнии;
  • Энергия атома.

Бесконечные исследования позволяют сопоставить возможности, предлагаемые природой. Человечество продолжает искать новые направления, которые в будущем наверняка превратятся в идеальную замену традиционных источников. Подробное описание даст общую информацию, а также укажет, какие виды уже нашли применение в повседневной жизни населения планеты.

Энергия солнца используется человеком давно. Первоначальные попытки делались в древние времена, когда посредством направленного луча люди зажигали дерево. Современные способы основываются на использовании больших площадей батарей, собирающих потоки для последующей обработки и накопления в аккумуляторах.


При помощи такой энергии летают все космические станции и спутники. На орбите доступ к звезде открыт, но и на Земле некоторые страны активно пользуются новым источником. Одним из примеров являются целые «поля» батарей, обеспечивающие небольшие городки. Хотя намного интереснее рассмотреть новые небольшие автономные источники, где площадь поверхности не превышает крыши маленького дома. Они устанавливаются в частном порядке по всему миру, чтобы осуществлять отопление без лишних затрат.

Энергия ветра используется человечеством испокон веков. Лучшим примером этого являются парусники, двигающиеся за счёт постоянного воздушного потока. Теперь научные исследования позволили создать специальные генераторы, обеспечивающие электричеством целые города. Причём они работают по двум принципам:

  • Автономно;
  • Параллельно с основной сетью.



В обоих случаях удаётся постепенно заменять традиционный источник, сокращая пагубное воздействие на окружающую среду. Сейчас можно оценить достигнутые результаты, подтверждающие правильность выбора. Данные подсказывают, что в Дании 25% получаемой энергии приходится именно на ветряные электростанции. Многие страны стараются постепенно перейти на новые источники, но это возможно только на открытых пространствах. Из-за чего в отдельных районах использование лучшего варианта остаётся недоступным.

Энергия воды остаётся незаменимой. Раньше она применялась на простых мельницах и кораблях, а сейчас огромные турбинные ГЭС поставляют электричество в целых регионах. Последние разработки предлагают человечеству познакомиться с фантастическим будущим, которое будет построено на новейших источниках. Какие альтернативы уже используются странами?

  • Приливные электростанции;
  • Волновые электростанции;
  • Микро и мини ГЭС;
  • Аэро ГЭС.

Приливные электростанции используют энергию приливов. Их высота и мощь зависит от воздействия Луны, поэтому стабильность подачи остаётся некоторой проблемой. Хотя во Франции, Индии, Великобритании и нескольких других государствах проект воплощён в жизнь и успешно используется в качестве незаменимой поддержки.



Волновые электростанции строятся на берегах океанов, где мощь регулярных ударов о побережье превышают мыслимые пределы. В этом случае ограничением становится недостаточная сила. Она не позволяет получить достаточное количество энергии.

Микро и мини ГЭС подходят для узких горных рек. Их небольшие размеры позволяют свободно найти время, а их мощность подходит для обеспечения маленьких поселений. Опытные модели проверены, поэтому сейчас строятся действующие объекты, обладающие неплохими показателями.

Аэро ГЭС – новейшая технология, которая пока ещё проходит проверку. Она основана на конденсации влаги из атмосферы. Действующие установки пока остаются призрачной мечтой, но есть определённые показатели, подтверждающие целесообразность вложения денежных средств в разработки.

Геотермальная энергия остаётся распространённой. Такой альтернативный источник используется несколькими различными способами. Он остаётся одним из самых интересных для определённых регионов, поэтому отказ от неё не имеет смысла. Единственной проблемой является высокая стоимость установок, что ограничивает их количество. Какие варианты возможны?

  • Тепловые электростанции;
  • Грунтовые теплообменники.


Энергия молнии

Энергия молнии – новое веяние. Это направление только начинает разрабатываться, но учёные утверждают, что есть возможность использования доступных гигаватт. Они теряются впустую, уходя в грунт. Американская компания приступила к исследованиям, которые ориентированы на создание специальных установок для улавливания гроз.

Энергия молнии – мощный источник, способный обеспечить электроэнергией крупный район мегаполиса. Ориентировочные денежные затраты на строительство должны окупаться в течение 5─7 лет, так что целесообразность подобных вложений остаётся неоспоримой. Остаётся только дождаться окончания исследований для внедрения новой технологии в широкий обиход.