Понятие геометрической изомерии. Пространственная изомерия. Тема: Введение в органическую химию

Причиной возникновения геометрической изомерии является отсутствие свободного вращения вокруг ст-связи. Этот вид изомерии характерен для соединений, содержащих двойную связь, и для соединений алициклического ряда.

Геометрические изомеры - это вещества, имеющие одинаковую молекулярную формулу, одинаковую последовательность связывания атомов в молекулах, но отличающиеся друг от друга различным расположением атомов или атомных групп в пространстве относительно плоскости двойной связи или плоскости цикла.

Причиной возникновения данного вида изомерии является невозможность свободного вращения вокруг двойной связи или ст-связей, образующих цикл.

Например, бутен-2 СН3-СН=СН-СН3 может существовать в виде двух изомеров, которые различаются расположением ме-тильных групп в пространстве относительно плоскости двойной связи:

или т,2-димтетилцитктопропан существует в виде двух изомеров,

которые различаются расположением метильных групп в пространстве относительно плоскости цикла:

/для обозначения конфигурации геометрических изомеров используют цис-, транс-систему. Если одинаковые заместители

3. Изомерия органических соединений. Пространственное строение молекул

ра^п^лиж^пш по одпу сторопу от ттлоскости двойпой ^dajw или

цикла, копфигурацию обозпачают цис-, если по разпые сторо-пы, - транс-.

Для соедипепий, у которых при атомах углерода с двойпой связью паходятся различпые заместители, примепяют Е^-систе-му обозпачепий.

EZ-Система является более общей. Опа примепима к геометрическим изомерам с любым пабором заместителей. В оспове этой системы лежит старшипство заместителей, которое определяют у каждого атома углерода отдельпо. Если старшие заместители из каждой пары расположепы по одпу сторопу от двойпой связи, коп-фигурация обозпачается буквой Z (от пем. zusammen - вместе), если по разпые сторопы,- буквой Е(от пем. entgegen - папротив).

Так, для 1-бром-1-хлорпропепа возможпо два изомера:

старшим! заместителем у одного атома углерода является ме-

тильная группа (заместители 1Н и 6СН3), а у другого - атом брома (заместители 17С1 и 35Вг). В изомере I старшие заместители расположены по одну сторону от плоскости двойной связи, ему приписывают Z-конфигурацию, а изомеру II - Е-конфигурацию (старшие заместители расположены по разные стороны плоскости двойной связи).

Геометрические изомеры имеют разные физические свойства (температуру плавления и кипения, растворимость и так далее), спектральные характеристики и химические свойства. Такое различие в свойствах позволяет довольно легко установить их конфигурацию с помощью физических и химических методов.

Геометрические изомеры возникают, если свободное вращение атомов в молекуле ограничено вследствие наличия двойной связи. Примером такой пары изомеров могут служить малеиновая (12.23) и фумаровая (12.24) кислоты (цис- и транс- соответственно).

По химическому строению геометрические изомеры очень похожи, но они не являются зеркальными отображениями друг друга и не вращают плоскость поляризации света. Как правило, цис- и транс-изомеры значительно отличаются по физическим свойствам. Например, малеиновая кислота (12.23) плавится при 130 °С, величина ее рКа 1,9, она очень хорошо растворима в холодной воде (79 г на 100 мл); константы ее геометрического изомера - фумаровой кислоты (12.24) соответственно 287 °С, 3,0 и 0,7 г на 100 мл. Неудивительно, что геометрические изомеры обладают разными биологическими свойствами и поэтому очень важно при изучении химической формулы нового соединения учитывать все возможности существования изомерии такого типа.

Цис- и транс-изомеры можно легко разделить кристаллизацией или хроматографически. Общего метода для превращения одного изомера в другой не существует, однако при нагревании, как правило, образуется наиболее стабильный изомер, а под действием света - менее стабильный. Зрение человека зависит от превращения 11-цис-изомера ретиналя в 11-транс-форму под действием света. Как только возбуждающий луч света исчезает,
этот каротиноидный пигмент снова переходит в цис-форму, пре- рывая тем с&^шм идущий к мозгу импульс , Цис- и транс-изомеры существуют и у плоского циклопентанового кольца, представляющего собой как бы большую двойную связь. Хотя циклогексановое кольцо вообще не плоское, оно тем не менее достаточно плоское для образования цис- и трансизомеров. Так, существуют и доступны как цис- (12.25), так и транс- (12.26) формы диаминоциклогексана. Одна и та же молекула может образовывать и геометрические, и оптические изомеры. Например, транс-изомер (12.26) может быть разделен на (S,S) (12.27) и (R.R) (12.28) хиральные изомеры. Однако цис-изомер на хиральные формы разделен быть не может, так как в нем существует плоскость симметрии. У бензольного кольца нет геометрических изомеров, так как у каждого атома углерода кольца только один заместитель.

Цис- Транс- TpaHC-(S S) TpaHC-(R.R)

(12.25) (12.26) (12.27) (12.28)


Стереоизомеры 1,2-диаминоцинлогенсана

Иногда бывает трудно выбрать два из четырех заместителей при двойной связи для определения цис- или транс-конфигурации. Правило последовательности предписывает выбирать заместителей с наиболее тяжелыми атомами, при этом цис-форма обозначается буквой Z (от немецкого слова zusammen), а трансформа- буквой Е (entgegen). Иногда в названиях соединений, в которых геометрическая изомерия может проявиться многократно, заместитель, имеющий самый маленький номер (по правилу нумерации), обозначают буквой г, а обозначения с-(цис) и t-(транс) перед другими заместителями показывают их положение по отношению к г-заместителю.

Аналогично индол-3-илуксусной кислоте (4.82), стимулирующей рост растительных клеток, могут действовать и другие карбоновые кислоты, карбоксильная группа которых находится под углом к плоскости ароматического кольца. Геометрическая изомерия ограничивает возможность такого расположения двух заместителей, поэтому из коричных кислот активен только цис- изомер . У 2-фенилциклопропан-1- карбоновой и 1,2,3,4-тетрагидронафталиден-Гуксусной кислот также активны только цис-изомеры . На молекулярных моделях видно, что кольцо и карбоксильная группа в транс-изомере (неактивном) этих веществ лежат в одной плоскости, в то время как в цис-форме (активной) они некопланарны. Впервые указал на эту связь между некопланарностью и стимулирующей рост активностью Veidstra. Некопланарность может возникнуть и вследствие стерических препятствий. Так, бензойная кислота имеет плоскую форму и не активна, а 2,6-дихлорбензойная и 8-метил-1-нафтойная кислоты непланарны и биологически активны .

В аналогах ауксинов карбоксильная группа может быть заменена и на другие электроноакцепторные группы (-CN, -N02, -SO3H), при этом биологическая активность лишь незначительно уменьшается. О связи между структурой и действием в этой серии см. Koepfli, Thimann, Went (1938) и Veidstra

Геометрическая изомерия стероидов заслуживает специального рассмотрения. На формуле (12.29) приведена общая структура этой группы природных насыщенных соединений (показана нумерация атомов углерода и буквенные обозначения четырех циклов). В природных стероидах кольца В и С находятся в транс-сочленении, причем оба они закреплены в конформации кресла. В сердечных гликозидах сочленение циклов С и D имеет цис-конфигурацию, но в гормонах животных, стеринах и желчных кислотах - транс-сочленение. У большинства биологически активных стероидов кольца А и В находятся в транс-сочленении («5а»-ряд, называвшийся ранее «алло»). Каждое из колец в молекуле стероидов образует складки, что хорошо видно на боковой проекции формулы (12.30).


Обозначение «5а» говорит о том, что атом водорода в положении 5 находится ниже общей плоскости колец. Все заместители, расположенные ниже этой плоскости, обозначаются символом «а», а выше - символом показаны на формулах (12.34) и (12.35).


ния заместителей в пространстве, так и формы цикла. Например, циклогексан может существовать в трех конформациях: кресла (12.36), ванны (12.37) и скрученной (или полукресла) (12.38).

Форма кресла - наименее напряженная и поэтому для молекулы циклогексана наиболее предпочтительна, при этом каждый аксиальный атом водорода удален на 0,25 нм от других двух аксиальных атомов водорода, расположенных по эту же сторону цикла. Скрученная (или твист-) форма занимает промежуточное положение (между формой кресла и лодки), а самая напряженная - форма ванны. Последняя, однако, может быть стабилизирована двумя или более конденсированными циклами, содержащими соответствующие заместители. Молекула декагидронафталина (декалина) может существовать в виде двух устойчивых форм, структура которых была определена методом дифракции электронов, показавшим, что транс-форма (температура плавления -30 °С, температура кипения 117 °С при 100 мм рт. ст.) состоит из двух транс-конденсированных циклов в конформации кресла, а цис-форма (температура плавления -43 °С, температура кипения 124 °С при 100 мм рт. ст.) состоит из двух цис-конденсированных циклов в конформации кресла. Цис-форма переходит в транс-форму при повышенной температуре и в присутствии катализатора. Молекула декалина представляет собой пример геометрической изомерии относительно мостиковых атомов углерода, но каждый цикл остается конформационно мобильным.

Интерес представляет конформационный анализ связи -СО-Н-, определяющей структуру пептидов. В белках ее конформация всегда «вытянутая» (транс), хотя в пептидах, содержащих пролин, т. е. третичную амидную группу, достаточно велика доля равновесной «заслоненной» (цис) конформации (до 40%) . Во вторичных формамидах существует равновесная смесь «вытянутого» и «заслоненного» конформеров в соотношении 8: 92 в случае N-метилформамида (12.39, 12.40). Их существование установлено по наличию двух раздельных сигналов в спектрах ПМР. С увеличением объема заместителя при атоме азота доля «вытянутого» конформера возрастает, достигая 18% при замене метильной группы на трет-бутильную .

Геометрические изомеры возникают, если свободное враще­ние атомов в молекуле ограничено вследствие наличия двойной связи. Примером такой пары изомеров могут служить малеино­вая (12.23) и фумаровая (12.24) кислоты (цис- и транс- соот­ветственно).

По химическому строению геометрические изоме­ры очень похожи, но они не являются зеркальными отображе­ниями друг друга и не вращают плоскость поляризации света. Как правило, цис- и транс-изомеры значительно отличаются по физическим свойствам. Например, малеиновая кислота (12.23) плавится при 130 °С, величина ее рКа 1,9, она очень хорошо растворима в холодной воде (79 г на 100 мл); константы ее гео­метрического изомера - фумаровой кислоты (12.24) соответ­ственно 287 °С, 3,0 и 0,7 г на 100 мл. Неудивительно, что гео­метрические изомеры обладают разными биологическими свой­ствами и поэтому очень важно при изучении хи­мической формулы нового соединения учитывать все возможно­сти существования изомерии такого типа.

Цис- и транс-изомеры можно легко разделить кристаллиза­цией или хроматографически. Общего метода для превращения одного изомера в другой не существует, однако при нагревании, как правило, образуется наиболее стабильный изомер, а под действием света - менее стабильный. Зрение человека зависит от превращения 11-цис-изомера ретиналя в 11-транс-форму под действием света. Как только возбуждающий луч света исчезает,

этот каротиноидный пигмент снова переходит в цис-форму, пре­рывая тем сй^ым идущий к мозгу импульс .

Цис- и транс-изомеры существуют и у плоского циклопента­нового кольца, представляющего собой как бы большую двой­ную связь. Хотя циклогексановое кольцо вообще не плоское, оно тем не менее достаточно плоское для образования цис- и транс­изомеров. Так, существуют и доступны как цис- (12.25), так и транс- (12.26) формы диаминоциклогексана. Одна и та же моле­кула может образовывать и геометрические, и оптические изо­меры. Например, транс-изомер (12.26) может быть разделен на (S,S) (12.27) и (R,R) (12.28) хиральные изомеры. Однако цис-изомер на хиральные формы разделен быть не может, так как в нем существует плоскость симметрии. У бензольного кольца нет геометрических изомеров, так как у каждого атома углерода кольца только один заместитель.

Стереоизомеры 1,2-диаминоцинлогенсана

Иногда бывает трудно выбрать два из четырех заместителей при двойной связи для определения цис- или транс-конфигура­ции. Правило последовательности предписывает выбирать заме­стителей с наиболее тяжелыми атомами, при этом цис-форма обозначается буквой Z (от немецкого слова zusammen), а транс­форма- буквой Е (entgegen). Иногда в названиях соединений, в которых геометрическая изомерия может проявиться много­кратно, заместитель, имеющий самый маленький номер (по правилу нумерации), обозначают буквой г, а обозначения с-(цис) и t-(транс) перед другими заместителями показывают их положение по отношению к г-заместителю.

Аналогично индол-3-илуксусной кислоте (4.82), стимулирую­щей рост растительных клеток, могут действовать и другие кар­боновые кислоты, карбоксильная группа которых находится под углом к плоскости ароматического кольца. Геометрическая изо­мерия ограничивает возможность такого расположения двух за­местителей, поэтому из коричных кислот активен только цис­изомер . У 2-фенилциклопропан-1- карбоновой и 1,2,3,4-тетрагидронафталиден-1-уксусной кислот также активны только цис-изомеры . На молекулярных моделях видно, что кольцо и кар­боксильная группа в транс-изомере (неактивном) этих веществ лежат в одной плоскости, в то время как в цис-форме (актив­ной) они некопланарны. Впервые указал на эту связь между

некопланарностью и стимулирующей рост активностью Veidstra. Некопланарность может возникнуть и вследствие стерических препятствий. Так, бензойная кислота имеет плоскую форму и не активна, а 2,6-дихлорбензойная и 8-метил-1-нафтойная кислоты непланарны и биологически активны .

В аналогах ауксинов карбоксильная группа может быть за­менена и на другие электроноакцепторные группы (-CN, -NO 2 , -SO3H), при этом биологическая активность лишь не­значительно уменьшается. О связи между структурой и действи­ем в этой серии см. Koepfli, Thimann, Went (1938) и Veidstra (1963).

Геометрическая изомерия стероидов заслуживает специаль­ного рассмотрения. На формуле (12.29) приведена общая струк­тура этой группы природных насыщенных соединений (показана нумерация атомов углерода и буквенные обозначения четырех циклов). В природных стероидах кольца В и С находятся в транс-сочленении, причем оба они закреплены в конформации кресла. В сердечных гликозидах сочленение циклов С и D име­ет цис-конфигурацию, но в гормонах животных, стеринах и желч­ных кислотах - транс-сочленение. У большинства биологически активных стероидов кольца А и В находятся в транс-сочлене­нии («5а»-ряд, называвшийся ранее «алло»). Каждое из колец в молекуле стероидов образует складки, что хорошо видно на боковой проекции формулы (12.30).

Обозначение «5а» говорит о том, что атом водорода в поло­жении 5 находится ниже общей плоскости колец. Все замести­тели, расположенные ниже этой плоскости, обозначаются симво­лом «а», а выше - символом «р». а-Заместители обозначают пунктирными линиями, а ^-заместители - сплошными. Символы а- и ^-используют и для других полициклических соединений, например, тритерпенов и алкалоидов. Сложность строения этих соединений затрудняет использование R- и S-номенклатуры.

Как правило, у млекопитающих высокая биологическая ак­тивность стероидных соединений связана с отсутствием а-заме- стителей в положениях 1, 9, 11-13, 17 и отсутствием р-замести- телей в положениях 4-8, 14, 15. Боковая проекция молекулы гидрокортизона иллюстрирует это правило . Первой стадией в биологическом действии сте­роидных гормонов является их влияние на специфический транс­порт белков (разд. 2.4). Предполагают, что с белками стероиды взаимодействуют плоской нижней стороной (a-поверхность) мо­лекулы.

Различные стероиды отличаются друг от друга в основном заместителями R 1 , R 2 и R 3 (12.29), но иногда и степенью нена- сыщенности или наличием других заместителей вне колец. Для того чтобы стероид обладал прогестиновой, андрогенной и кор- тикоидной активностью, как правило, необходимо наличие цик­логексеноновой структуры кольца А. Для проявления активно­сти кортизонового типа необходимы атомы кислорода в положе­ниях 3, 11 и 17 и характеристичная группа -СО-СН 2 ОН в по­ложении 17. Андрогенная и кортикоидная активность в большей степени зависит от этих деталей строения молекулы, однако прогестиновая активность сохраняется, если ацетильная группа в положении 17 находится в a-конфигурации, не встречающейся в природных соединениях, а замена метильной группы в поло­жении 18 на этильную приводит даже к усилению этой актив­ности (пероральный контрацептив норгестрел).

Из всех стероидных гормонов наименее жесткие требования к структуре предъявляют соединения, обладающие эстрогенной активностью. При условии ароматизации кольца А и наличии кислой гидроксильной группы в положении 3 строение осталь­ной части молекулы имеет второстепенное значение. В 1938 г. появились простые высокоэффективные бензольные аналоги стероидных эстрогенов. Хотя считалось, что их молекулы по форме похожи на молекулы стероидов, в действительности меж­ду ними не так уж много общего. По данным рентгенострук­турного анализа молекула диэтилстильбэстрола (12.31) имеет транс-конфигурацию, искаженную из-за стерических затрудне­ний, создаваемых метиленовыми фрагментами двух этильных групп. Поэтому два бензольных кольца образуют с этиленовым фрагментом двугранный угол 63°, что делает форму молекулы совершенно не похожей на стероидную. Однако в этих молеку­лах примерно одинаково расстояние между атомами кислорода: 1,21 нм в диэтилстильбэстроле и от 1,07 до 1,11 нм в стероид­ных эстрогенах, но все эти молекулы слишком жесткие и поэто­му не способны взаимодействовать с одним и тем же рецепто­ром, в котором фиксировано расстояние между точками связы­вания. Известно, что для проявления эстрогенной активности необходимо образование двух водородных связей рецептора с атомами кислорода лиганда, следовательно, рецептор должен обладать определенной гибкостью . Oki, Urushibara (1952) впервые отметили, что действие диэтилстильбэстрола связано и с толщиной его молекулы, кото­рая составляет 0,45 нм и равна толщине молекул стероидных эстрогенов .

Диэтилстильбэстрол 3,4-ди (4-гидроксифенил) гекс-3-ен

(12.31), эффективный и недорогой заменитель основного женс­кого гормона эстрадиола (12.32), появился в 1938 г. . Этот синтетический лекарственный препарат, отли­чающийся от природного гормона высокой эффективностью при пероральном применении и большей длительностью действия, стал основным препаратом в эндокринной терапии. Некоторое недоверие к этому препарату возникло на основании двух фак­торов: во-первых, его неограниченно применяли для увеличе­ния веса сельскохозяйственных животных, а во-вторых, были отмечены случаи заболевания раком у женщин, матери кото­рых принимали его во время беременности. Несмотря на это, диэтилстильбэстрол продолжают широко применять и считают безопасным средством; его не назначают только в первые три месяца беременности (что, кстати, в равной степени относится и к природному гормону). О применении его фосфата для лече­ния рака предстательной железы см. разд. 4.2. Сходными эст­рогенными свойствами обладает и дигидропроизводное диэтил- стильбэстрола-синэстрол (12.33, а) (конфигурация 3R, 4S). С эстрогенсвязывающим белком (разд. 2.4) он соединяется сильнее, чем сам диэтилстильбэстрол, а еще сильнее взаимодейству­ет с этим белком его низший гомолог-норгексэстрол (12.33, б) .

Сердечные гликозиды рассматриваются в разд. 14.1. Подроб­ное изложение химии и стереохимии стероидов см. Shoppee (1964), биохимии и фармокологии - Briggs, Christie (1977).

Геометрическая изомерия 4-аминокротоновой кислоты, кото­рая помогла определить активную конформацию нейромедиа­тора гамма-аминомасляной кислоты, рассматривается в разд. 12.7.

В ходе урока вы получите общее представление о видах изомерии, узнаете, что такое изомер. Узнаете о видах изомерии в органической химии: структурной и пространственной (стереоизомерии). С помощью структурных формул веществ рассмотрите подвиды структурной изомерии (скелетную и изомерию положений), узнаете о разновидностях пространственной изомерии: геометрической и оптической.

Тема: Введение в органическую химию

Урок: Изомерия. Виды изомерии. Структурная изомерия, геометрическая, оптическая

Рассмотренные нами ранее виды формул, описывающих органические вещества, показывают, что одной молекулярной может соответствовать несколько разных структурных формул.

Например, молекулярной формуле C 2 H 6 O соответствуют два вещества с разными структурными формулами - этиловый спирт и диметиловый эфир. Рис. 1.

Этиловый спирт - жидкость, которая реагирует с металлическим натрием с выделением водорода, кипит при +78,5 0 С. При тех же условиях диметиловый эфир - газ, не реагирующий с натрием, кипит при -23 0 С.

Эти вещества отличаются своим строением - разным веществам соответствует одинаковая молекулярная формула.

Рис. 1. Межклассовая изомерия

Явление существования веществ, имеющих одинаковый состав, но разное строение и поэтому разные свойства называют изомерией (от греческих слов «изос» - «равный» и «мерос» - «часть», «доля»).

Типы изомерии

Существуют разные типы изомерии.

Структурная изомерия связана с разным порядком соединения атомов в молекуле.

Этанол и диметиловый эфир - структурные изомеры. Поскольку они относятся к разным классам органических соединений, такой вид структурной изомерии называется еще и межклассовой . Рис. 1.

Структурные изомеры могут быть и внутри одного класса соединений, например формуле C 5 H 12 соответствуют три разных углеводорода. Это изомерия углеродного скелета . Рис. 2.

Рис. 2 Примеры веществ - структурных изомеров

Существуют структурные изомеры с одинаковым углеродным скелетом, которые отличаются положением кратных связей (двойных и тройных) или атомов, замещающих водород. Этот вид структурной изомерии называется изомерией положения .

Рис. 3. Структурная изомерия положения

В молекулах, содержащих только одинарные связи, при комнатной температуре возможно почти свободное вращение фрагментов молекулы вокруг связей, и, например, все изображения формул 1,2-дихлорэтана равноценны. Рис. 4

Рис. 4. Положение атомов хлора вокруг одинарной связи

Если же вращение затруднено, например, в циклической молекуле или при двойной связи, то возникает геометрическая или цис-транс изомерия. В цис-изомерах заместители находятся по одну сторону плоскости цикла или двойной связи, в транс-изомерах - по разные стороны.

Цис-транс изомеры существуют в том случае, когда с атомом углерода связаны два разных заместителя. Рис. 5.

Рис. 5. Цис- и транс- изомеры

Еще один тип изомерии возникает в связи с тем, что атом углерода с четырьмя одинарными связями образует со своими заместителями пространственную структуру - тетраэдр. Если в молекуле есть хотя бы один углеродный атом, связанный с четырьмя разными заместителями, возникает оптическая изомерия . Такие молекулы не совпадают со своим зеркальным изображением. Это свойство называется хиральностью - от греческого с hier - «рука». Рис. 6. Оптическая изомерия характерна для многих молекул, входящих в состав живых организмов.

Рис. 6. Примеры оптических изомеров

Оптическая изомерия называется также энантиомерией (от греческого enantios - «противоположный» и meros - «часть»), а оптические изомеры - энантиомерами . Энантиомеры оптически активны, они вращают плоскость поляризации света на один и тот же угол, но в противоположные стороны: d- , или (+)-изомер, - вправо, l- , или (-)-изомер, - влево. Смесь равных количеств энантиомеров, называемая рацематом , оптически недеятельна и обозначается символом d,l- или (±).

Подведение итога урока

В ходе урока вы получили общее представление о видах изомерии, что такое изомер. Узнали о видах изомерии в органической химии: структурной и пространственной (стереоизомерии). С помощью структурных формул веществ рассмотрели подвиды структурной изомерии (скелетную и изомерию положений), познакомились с разновидностями пространственной изомерии: геометрической и оптической.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 1,2 (с.39) Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Почему число изомеров у углеводородов ряда этилена больше, чем предельных углеводородов?

3. Какие углеводороды имеют пространственные изомеры?

Изомерия лигандов

Изомерия лигандов подразделяется на связевую (которая определяется разным типом координации одного и того же лиганда), и собственно изомерию лиганда.

Примерами связевой изомерии может служить существование нитро- и нитрито-комплексов кобальта(III) состава K 3 и K 3 , в которых координация лиганда NO 2 - осуществляется, соответственно, через атом азота или атом кислорода. Другой пример – координация тиоцианат-иона NCS - через атом азота или через атом серы, с образованием тиоцианато-N- или тиоцианато-S-комплексов.

Кроме того, лиганды сложного строения (например, аминокислоты) могут сами по себе образовывать изомеры, координация которых ведет к образованию комплексов одинакового состава с разными свойствами.

Геометрическая изомерия вызвана неодинаковым размещением лигандов во внутренней сфере относительно друг друга. Необходимым условием геометрической изомерии является наличие во внутренней координационной сфере не менее двух различных лигандов. Геометрическая изомерия проявляется преимущественно у комплексных соединений, имеющих октаэдрическое строение, строение плоского квадрата или квадратной пирамиды.

Комплексные соединения с тетраэдрическим, треугольным и линейным строением геометрических изомеров не имеют, поскольку места расположения лигандов двух разных видов вокруг центрального атома равноценны.

Комплексы, имеющие строение плоского квадрата, при наличии двух разных лигандов L ′ и L ′′ уже могут иметь два изомера (цис- и транс-):

Примером комплексного соединения, имеющего цис- и транс-изомеры, может служить дихлородиамминплатина(II):

Отметим, что комплексное соединение состава со структурой плоского квадрата не может иметь изомеров: положение лиганда L ′′ равновероятно в любом углу квадрата. Когда же появляется два разных лиганда, то уже возможно существование двух изомеров (цис- и транс-), отличающихся по свойствам. Так, цис-дихлородиамминплатина (II) – оранжево-желтые кристаллы, хорошо растворимые в воде, а транс-дихлородиамминплатина(II) – кристаллы бледно-желтого цвета, растворимость которых в воде несколько ниже, чем у цис-изомера.

С увеличением числа различных лигандов во внутренней сфере растет число геометрических изомеров. Для хлорида нитро(гидроксиламин)аммин(пиридин)платины(II) Cl получены все три изомера:

Октаэдрические комплексы могут иметь множество изомеров. Если в комплексном соединении такого рода все шесть лигандов одинаковы () или отличается от всех остальных только один (), то возможность различного расположения лигандов по отношению друг к другу отсутствует. Например, у октаэдрических соединений любое положение лиганда L ′′ по отношению к остальным пяти лигандам L ′ будет равноценным и поэтому изомеров здесь не должно быть:



Появление двух лигандов L ′′ в октаэдрических комплексных соединениях приведет к возможности существования двух геометрических изомеров . В этом случае появляются два различных способа расположения лигандов L ′′ друг относительно друга. Например, катион дигидроксотетраамминкобальта(III) + имеет два изомера:

При попытке найти какое-нибудь еще взаимное расположение лигандов H 3 N и OH - , которое отличалось бы от указанных выше, мы всегда придем к строению одного из уже приведенных.

При увеличении в комплексе числа лигандов, имеющих разный химический состав, число геометрических изомеров быстро растет. У соединений типа будет четыре изомера, а у соединений типа , содержащих шесть разных лигандов, число геометрических изомеров достигает 15. Подобные комплексные соединения пока еще мало изучены.

Геометрические изомеры существенно отличаются по физико-химическим свойствам, таким как цвет, растворимость, плотность, кристаллическая структура и т.д.