Реферат: Аккумулирование тепла. Повышение кпд автономных источников электроэнергии. В автомобильной промышлености

Одной из важнейших особенностей энергетики в наши дни является всевозрастающая неравномерность потребления энергии. Это обстоятельство в сочетании с высокой стоимостью топлива заставляет энергетиков как в России, так и за рубежом искать новые возможности покрытия переменной части графиков электрических и тепловых нагрузок.

Д ля обеспечения кратковременного повышения нагрузок в энергосистеме можно использовать тепловое, пневматическое, гидравлическое, электромеханическое и другие виды аккумулирования энергии. Весьма успешным, например, оказался первый опыт применения подземного аккумулирования сжатого воздуха. Во многих странах в промышленных масштабах используются гидроаккумулирующие электростанции, потребляющие энергию ТЭС и АЭС в периоды низкой нагрузки в энергосистемах и вырабатывающие электроэнергию в часы пика нагрузки.

В области теплоснабжения также наблюдаются значительные суточные и сезонные колебания графика нагрузок, для покрытия которых все чаще применяют теплоаккумулирующие установки.

Теплоаккумулирующие установки

В качестве рабочих емкостей в установках для внутрисуточного сглаживания графика нагрузок используют в основном секционные резервуары, сварные баки, железобетонные наземные и подземные конструкции. Для покрытия сезонных колебаний нагрузки часто используют не только искусственные резервуары, но и отработанные шахты или разного рода естественные пустоты в водонепроницаемых грунтах.

Небольшие тепловые аккумуляторы, принимая на себя обеспечение тепловой нагрузки, позволяют на время суточных пиков электрической нагрузки отключать отопительные отборы пара на ТЭЦ. В отдельных случаях, при кратковременном увеличении тепловой нагрузки, аккумуляторы позволяют обойтись без пуска пиковой котельной и тем самым сэкономить органическое топливо.

Для аккумулирования теплоты можно использовать, любые нетоксичные вещества, имеющие достаточно высокую теплоемкость или высокую теплоту плавления при хорошей теплопроводности (например, соли, находящиеся в расплавленном или эвтектическом состоянии). Однако чаще всего для аккумулирования теплоты применяется вода.

Широкое внедрение установок для аккумулирования теплоты сдерживается высокой стоимостью этих установок.

Рациональная аккумуляция тепла

Были проведены экономические расчеты, которые показали, что максимальную удельную стоимость имеют теплоаккумуляторы в виде земляных бассейнов с теплоизоляцией. Несколько дешевле обходятся стальные баки-аккумуляторы, которые имеют, как правило, небольшой объем и поэтому чаще используются для внутрисуточного регулирования.

Для создания крупных теплоаккумуляторов, обеспечивающих сезонное регулирование, экономичнее применять искусственные подземные пустоты: их удельная стоимость при вместимости более 100 тыс. м3 существенно меньше, чем у стальных теплоаккумуляторов. Еще ниже удельная стоимость аккумулирования теплоты при использовании подземных водоносных горизонтов. Этот сравнительно новый метод аккумулирования представляется весьма перспективным, так как водоносные горизонты распространены довольно широко, они являются естественными образованиями, и поэтому практически единственным видом капитальных затрат при создании таких аккумуляторов будет стоимость бурения скважин для обеспечения доступа к горизонту. Важным достоинством этого метода является и то, что теплота в данном случае аккумулируется не только в объеме воды, но и в горной породе водоносного горизонта. Природный аккумулятор не изна-шивается, не требует технического обслуживания и ремонта, а срок его использования практически неограничен.

Во многих странах энергетики проявляют интерес к этой проблеме. В Швейцарии, например, при поддержке Международного энергетического агентства сооружен теплоаккумулятор с использованием водоносного горизонта, расположенного на глубине до 36 м. Кроме центральной скважины на глубине от 7 до 24 м, были смонтированы радиальные трубы, через которые осуществлялись нагнетание и отбор теплой воды. Схема предполагала возможность аккумулирования солнечной энергии или сбросной теплоты (температура воды от 30 до 100 °С). Потребителями аккумулированной энергии были системы отопления, горячего водоснабжения и кондиционирования воздуха в жилых домах.

Первая закачка горячей воды состоялась еще в конце прошлого века в июле, а отбор теплой воды температурой 30-55 °С- в январе следующего года. В первом цикле эффективность этого аккумулятора составила 35 %, однако в следующих циклах удалось аккумулировать в водоносном горизонте примерно по 1290 Гкал (при мощности около 0,43Гкал/ч) и извлекать из него по 645 Гкал (при средней мощности 0,258 Гкал/ч).

Во Франции в те же годы были проведены экспериментальные исследования для оценки эффективности сезонного аккумулирования теплоты путем закачки воды температурой 100-180 °С в водоносный горизонт, располо-женный на глубине около 50 м. Особое внимание было уделено регистрации тепловых потерь, а также воздействию аккумуляции на окружающую среду. По итогам этого эксперимента были выбраны направления дальнейших исследований и возможные объемы внедрения.

Перспективы аккумулирования тепла в водоносных горизонтах

Перспективным направлением является сочетание аккумулирования теплоты в водоносных горизонтах с использованием тепловых насосов. Расчеты показывают, что такое сочетание значительно повышает эффективность систем обогрева (в зимнее время) и кондиционирования воздуха (в летнее время) (рис. 1).

Рис. 1. Аккумулирование теплоты в водоносных горизонтах с тепловыми насосами

При определенных климатических условиях аккумулирование теплоты в этом случае (рис. 2) может значительно повысить коэффициент преобразования энергии и сэкономить до 50 % первичной энергии, расходуемой на отопление и охлаждение жилых и производственных помещений.

Рис. 2. Тепловые насосы для систем аккумулирования теплоты в водоносных горизонтах

Большой интерес вызывает аккумулирование теплоты в водоносных горизонтах с использованием гелиоустановок. Понятно, что равномерность солнечной радиации в зависимости от времени суток, сезона или погодных условий требует применения резервной системы теплоснабжения или больших и дорогостоящих аккумуляторов теплоты. Немецкими специалистами на мюнхенском семинаре по проблемам аккумулирования тепловой энергии были приведены такие цифры: гелиотермическая установка без аккумулирования теплоты может в условиях ФРГ удовлетворить лишь 10 % потребностей обслуживаемых ею домов. При наличии плоского гелиоприемника (рис. 3) площадью 2000 м2 с тепловыми трубами в сочетании с центральным тепловым аккумулятором вместимостью 150 м3 можно было бы удовлетворить уже 25 % потребностей 250 односемейных коттеджей в теплоте. Для удовлетворения 70-90 % этих потребностей гелиотермическая установка должна быть дополнена сезонным теплоаккумулятором, соединенным с теплосетью. Использование водоносных горизонтов для этих целей позволит решить проблему с минимальными капитальными затратами.

Рис. 3. Гелиоприемник

Перспективными являются и такие области применения нового метода аккумулирования теплоты, как горячее водоснабжение, обогрев теплиц и т. д. При необходимости получения технологического пара в водоносных горизонтах можно аккумулировать горячую воду под давлением выше атмосферного, что позволит использовать ее в теплообменниках для получения пара.

Большой интерес во многих странах Европы вызывает система обогрева и охлаждения с использованием тепловых насосов. Основным устройством, предназначенным для отбора теплоты из водоносного горизонта или передачи ему тепловой энергии, является тепловой насос. Налажен серийный выпуск самых разнообразных тепловых насосов с отбором низкопотенциальной теплоты из воды производительностью от 1,75 до 7034 кВт, или от 0,5 до 2000 т (1 т охлаждения - единица холодопроизводительности, которая в Великобритании соответствует 13,9 МДж/ч (3,86 кВт), в США - 12,7 МДж/ч (3,53 кВт).

Варианты применения

Основные варианты предлагаемых теплонасосных установок показаны на (рис. 4). В жилых домах на одну семью можно применять небольшие автономные тепловые насосы. В более крупных зданиях может быть создана разветвленная система тепловых насосов, которые обслуживают или большое помещение, или небольшие отдельные комнаты. В высотном здании целесообразно установить центральный тепловой насос для обогрева и охлаждения любых помещений. В жилом или деловом районе города можно также смонтировать центральную теплонасосную установку для отопления и кондиционирования жилых домов, учреждений и предприятий. Тепловой насос повышает качество энергии, аккумулированной в подземных водах, и делает более эффективным ее использование.

Рис. 4. Аккумулирование теплоты в водоносном горизонте с использованием тепловых насосов: 1 - крупные центральные теплонасосные установки в многоэтажных зданиях; 2 - небольшие децентрализованные (внутрикомнатные) тепловые насосы в многоэтажных зданиях; 3 - небольшие отдельные тепловые насосы в индивидуальных жилых домах; 4 - холодная скважина; 5 - глубинный насос; 6 - движение фронта температур; 7 - горячая скважина; 8 - двухтрубная распределительная система

Краткое описание системы

Действие системы с применением тепловых насосов, которая рассмотрена ниже, основано на аккумулировании теплоты для улучшения характеристик отдельных теплонасосных установок. Система накапливает теплоту, выделяемую при кондиционировании воздуха, а затем использует ее для отопления. Следовательно, она служит источником тепловой энергии при обогреве и теплоприемником при охлаждении.

Аккумулирующая система большой емкости создана самой природой в водоносном горизонте. Доступ к этой системе обеспечивается с помощью двух скважин. Если необходим нагрев, теплую воду (27° С для основного варианта системы) извлекают из водоносной формации и повышают ее температуру до 49 °С. В процессе отдачи теплоты окружающему воздуху вода остывает до 16 °С и ее возвращают обратно в горизонт через вторую скважину. Температурный фронт движется по водоносной породе между обеими скважинами. Количество извлекаемой и нагнетаемой воды одинаково; чистый расход подземной воды равен нулю.

При использовании воды для охлаждения весь процесс протекает в обратном порядке. Холодную воду температурой 16 °С откачивают из водоносной формации, и она поглощает теплоту, в результате чего происходит кондиционирование воздуха. Теплая вода температурой 27 °С нагнетается обратно в горизонт. Как и при обогреве поме-щений, чистый расход воды равен нулю. В ходе этого процесса температурный фронт перемещается между скважинами в обратном направлении.

Теплонасосные установки и система аккумулирования тепловой энергии соединены между собой с помощью двухтрубной системы распределения воды. По одной линии поступает теплая вода, по другой - холодная. Если понадобится нагрев, теплонасосная установка отбирает воду из линии теплой воды, а после того, как вода отдала свою теплоту, сбрасывает ее в линию холодной воды. Обогрев и охлаждение могут происходить одновременно. Насосы, находящиеся в обеих скважинах, обеспечивают постоянное наполнение соответствующих магистральных трубопроводов теплой и холодной водой. Для аккумулирования используются местные водоносные горизонты, так что протяженность трубопроводов невелика. Теплоизоляция труб не нужна, поскольку они уложены в траншею, и их температура мало отличается от температуры грунта. Для уменьшения стоимости самих трубопроводов и их прокладки рекомендуется в большинстве случаев использовать трубы из поливинилхлорида (рис. 5). Стальные и чугунные трубы следует применять лишь при очень больших расходах, которые обычно имеют место при обслуживании крупных городских районов.

Рис. 5. Трубы из поливинилхлорида

Чтобы создать действенную аккумулирующую систему с использованием тепловых насосов, надо сделать эту систему коммунальной. Тогда стоимость сооружения двух скважин распределится между несколькими потребителями. По техническим соображениям система аккумулирования тепловой энергии должна иметь емкость выше минимально допустимой, чтобы гарантировались необходимые масштабы накопления энергии. Управление системой следует поручить местной организации, которая обеспечит разработку, сооружение, обслуживание системы и возьмет ее под свой контроль.

Теплонасосные установки могут быть самыми различными - от небольшого теплового насоса (для жилого дома на одну семью или для квартиры крупного здания) до больших центральных установок (для обслуживания многоэтажного здания). Для одновременного отопления и охлаждения помещений можно создать обмен горячей и холодной водой между установками, чтобы вода вообще не циркулировала через скважины и водоносный горизонт. Две скважины или группа спаренных скважин, система с водоносным горизонтом в качестве аккумулятора тепловой энергии и тепловые насосы, находящиеся на определенном участке коммунальной системы обогрева и охлаждения, образуют в совокупности так называемый модуль. Соединяя между собой модули, можно повысить надежность и увеличить размеры всей системы в целом; в результате этого сокращаются расходы на строительство и техническое обслуживание, можно также уменьшить количество людей, занимающихся эксплуатацией системы. Например, вышедший из строя насос можно будет исправить в любое удобное время, а не обязательно сразу, как только он вышел из строя, так как насос другого модуля сможет взять на себя дополнительную нагрузку. Модули можно подключать к системе поочередно в целях планомерного расширения сети теплонасосных установок, принадлежащих населению жилого массива.

Система работает не на дефицитных видах топлива, а на электроэнергии, поступающей с пылеугольных, мазутных, газовых ТЭС, а также с атомных и гидравлических станций. Тепловой насос с отбором низкопотенциальной теплоты из воды, работающий в абсорбционном цикле с нагревом генератора, можно включить в систему, если имеется источник сбросной теплоты.

Предлагаемую конструкцию можно использовать в любой системе отопления и охлаждения, расположенной на незначительном расстоянии от водоносного горизонта, если он обладает достаточно большой водоотдачей. Именно такие условия существуют на территории, составляющей 60 % континентальной части США, с населением, численность которого равна 75 % всего населения страны. Над водоносными формациями, пригодными для аккумулирования, находятся деловые и торговые центры, крупные жилые массивы. Чем выше плотность населения, тем выгоднее сооружать подобные системы. Везде, кроме юга Флориды и отдельных районов Калифорнии, где круглый год тепло, система позволит сэкономить значительные сред-ства на стоимости теплоносителей, особенно с учетом непрерывного удорожания энергии. Даже при современном уровне технологии такими системами могут быть в ближайшие годы охвачены 72 млн домашних хозяйств и 14,6 млн коммерческих предприятий в США.

В странах Западной Европы сложилась следующая ситуация: на 2015 г. в Бельгии эксплуатировалось примерно 1130 таких систем, в Нидерландах их количество увеличилось с 2000 в 2012 г. до 2500 в 2015 г.

Согласно данным Международного энергетического агентства (МЭА), стоимость монтажа систем аккумулирования теплоты в водоносном горизонте с использованием тепловых насосов в 2005 г. составляла от 200 до 1150 евро за 1 кВтт, при снижении ее к 2030 г. на 15 %. В отчете фирмы Terra Energy 2012 г. для большой системы (700 кВтт) было показано, что стоимость ее монтажа составляет 1179 евро за 1 кВтт, а динамический срок окупаемости - 7,5 лет.

Статья из журнала "Аква-Терм", № 3 /2016. Рубрика "Отопление и ГВС"

Устройства для преобразования возобновляемой энергии по сравнению с установками на обычном и ядерном топлив различаются по требованиям к аккумулированию и передаче на расстояние. Такие особенности возобновляемых источников, как низкая интенсивность и рассеянность, делают для них предпочтительным децентрализованное потребление. Более того, энергию от этих источников часто не нужно будет передавать на большие расстояния, так как источники уже распределены в пространстве.

Так как полезность устройств для преобразования возобновляемой энергии основана на переработке независимых от нас естественных потоков, существует проблема приведения в соответствие выработки энергии и потребности в ней в рамкам временного спроса, т.е. в выравнивании скорости потребления энергии. Последняя изменяется во времени в масштаба месяцев (например, для обогрева жилищ в зонах умеренного климата), дней (например, для искусственного освещения) и даже секунд (в моменты включения крупных нагрузок). в противоположность энергетике на традиционном топливе получаемая из окружающей среды мощность возобновляемых источников нам не подконтрольна.

У нас есть выбор: либо подгонять нагрузку к интенсивности. доступной для преобразования возобновляемой энергии, либо накапливать энергию для последующего использования. У нас на выбор самые различные способы аккумулирования:

¾ химические;

¾ тепловые;

¾ электрические, в форме потенциальной или кинетической энергии.

Аккумулирование энергии - не новая концепция в энергетике. Ископаемые топлива в этом смысле являются эффективным аккумулятором с высокой плотностью энергии. Однако по мере того, как источники топлива становятся все менее доступными и все более дорогими, появляется необходимость в развитии других методов аккумулирования, и в качестве одного из них - производства возобновляемого топлива.

5.2. Химическое аккумулирование.

Энергия может удерживаться в связях многих химических элементов и выделятся в процессе экзотермических реакций, из которых наиболее известно горение. Иногда необходимо применить для запуска такой реакции предварительной нагревание или катализаторы (например, энзимы). Биологические компоненты представляют особый случай. Здесь речь идет лишь о неорганических соединениях, являющихся наиболее распространенными аккумуляторами, энергия которых выделяется при сгорании в воздухе.

Водород. Может быть получен путем электролиза воды с помощью любого источника тока. В виде газа он может быть накоплен, передан на расстояние и сожжен для получения тепловой энергии. Единственным продуктом сгорания водорода является вода: не образуется никаких загрязняющих веществ. Энтальпия образования водорода Н=-242 кДж/моль, т.е. при образовании 1 моля Н2 О (18 г) выделяется 242 Дж тепловой энергии. Хранить водород в больших количествах непросто. Наиболее обещающий способ - использование подземных каверн, подобных тем, из которых добывается природный газ. Но хранение газа - даже под высоким давлением - требует значительных объемов. Необходимо заметить, что водород можно передавать через разветвленную сеть трубопроводов, используемых сейчас для подачи природного газа во многих странах мира. Кроме того, существует возможность с большой эффективностью использовать его для

Рис. 5.1 Грунтовый аккумулятор тепла

непосредственного получения электроэнергии с помощью топливных элементов.

Аммиак. В отличие от воды аммиак может быть разложен на составляющие элементы при доступных температурах:

N2 + 3H2 2NH3

В сочетании с принципом теплового двигателя эта реакция может стать основой наиболее эффективного способа непрерывного получения электроэнергии за счет использования солнечного тепла.

5.3. Аккумулирование тепловой энергии.

Использование низкотемпературного тепла составляет существенную часть мирового потребления энергии. Существенно не обязательно использовать для обогрева высокотемпературные источники энергии, которые гораздо лучше сберечь для других целей. Для обогрева жилищ больше подходят пассивные приемник солнечного тепла в сочетании с тепловыми аккумуляторами, поддерживающими комфортные условия по ночам и в пасмурные дни. Более того, именно в тех случаях, когда, энергия используется при низких температурах, характерных для среды,

ее особенно ценно

накапливать в форме тепла. Тепловое аккумулирование плодотворно и при использовании "отходов"

тепла, возникающих в процессе работы различных установок. Запастись на три месяца теплом для обогрева жилого дома - вполне решаемая задача. Правда при этом важно не только сделать хороший проект, но и грамотно его реализовать.

В частности, необходимо качественно выполнить теплоизоляцию и предохранить дом от сырости, снабдить его управляемой системой вентиляции (возможно, с рециркуляцией тепла), использовать все "отходы" тепла от освещения, приготовления пищи, жизнедеятельности самих обитателей. Существуют примеры подобных высокотехнологичных домов, обладающих кроме всего прочего прекрасной архитектурой и создающих идеальные условия для жизни. Отметим, что в качестве аккумулирующей тепло среды предпочтительнее использовать вместо воды скальные породы.

На рис.5.1. показан пример использования аккумулятора тепла в виде грунтового теплообменника.

В течение короткого периода продолжительностью до четырех дней сами здания можно использовать в качестве аккумуляторов тепла. При проектирование зданий для стран с жарким климатом важное применение по аналогии с созданием запасов тепла может найти аккумулирование холода.

Известно, что использование аккумулирования тепла в широком масштабе высокоширотными морскими странами позволило бы решить проблемы снабжения теплом за счет развития ветро- и волноэнергетики. Оба эти источника наиболее производительны зимой, а их мощность, хотя и изменяется периодически час от часу, редко существенно падает более чем на несколько дней. Значительно большей теплоемкостью в ограниченном интервале температур по сравнению с системами использующие поглощение тепла, обладают материалы, при изменении температуры изменяющие фазовое состояние. Например, глауберову соль (Na2 SO4 10H2 O) можно использовать для аккумулирования тепла уже при комнатной температуре. При 32о С она разлагается на насыщенный раствор N2 SO4 с выпадением части Na2 SO4 в

осадок. Эта реакция обратима и дает 250 кДж/кг ≈ 650 МДж/м3 тепловой энергии. Так как большая часть стоимости аккумуляторов для обогрева зданий связана со стоимостью конструкций, такие аккумуляторы могут оказаться дешевле, чем водяные емкости с более низкой удельной плотностью запасания

Наиболее важной причиной необходимости аккумулирования тепла в солнечной энергетической установке является непосто­янство сияния солнца и постоянная потребность в энергии Кро­ме того, при наличии солнца, как правило, поступает больше энергии, чем требуется, и поэтому, накопив энергию, ее можно использовать в дальнейшем, когда солнца нет

При проектировании аккумулятора солнечного тепла необ­ходимо соизмерять стоимость с рабочими характеристиками Некоторыми решающими факторами стоимости являются вы­бор теплоаккумулирующей среды для теплового аккумулятора, которой могут служить, например камни, вода или эвтектиче­ские соли, необходимое количество этой теплоаккумулирующей рабочей среды, измеряемое по весу или по объему, размещение теплового аккумулятора либо в отапливаемом помещении, либо вне его, тип и размеры контейнера для аккумулирующей среды, теплообменники, если необходимо, для передачи или отбора теп­ла от рабочего тела и механическое устройство для перемеще­ния теплоаккумулирующей среды через аккумулятор или теп лообменники

Кроме этих факторов рабочие характеристики также зависят 01 средней рабочей температуры, падения давления теплоноси­теля, движущегося через теплоаккумулирующую среду, и от по - іерь тепла контейнером в окружающую среду

Есть три основных вида теплоаккумулирующей среды кам­ни, вода и эвтектические соли (с фазовым превращением)

Способность разных материалов накапливать тепло зависит от их удельной теплоемкости Как указывалось в предыдущей части, удельная теплоемкость материала выражается количест­вом тепла (Дж), необходимого для повышения температуры 1 кг материала на 1° Энергию, часто называемую физической теплотой, можно получить обратно по мере снижения темпера туры вещества Это основной принцип действия большинства солнечных тепловых аккумуляторов В табл 15 приводятся теплоаккумулирующие способности нескольких распространен­ных материалов

Выбор теплоаккумулирующей среды и солнечного коллекто­ра должен "проводиться одновременно. Почти без исключения все системы жидкостного типа, будь то открытые (например, си­стема Томасона) или закрытые типа «труба в листе», требуют жидкой теплоаккумулирующей среды. В большинстве систем воздушного типа теплоаккумулирующая среда состоит из не­больших элементов - наиболее распространенными являются камни, небольшие (несколько кубических дециметров) сосуды с водой или эвтектические соли в контейнерах, которые дают возможность воздуху проходить вокруг и между ними, переда­вая им тепло. Альтернативными вариантами являются также системы, которые конструктивно сочетают в себе солнечный коллектор и аккумулятор тепла (см. часть III).

Аккумулятор для жидких систем. Существенным преимуще­ством жидкостных систем, содержащих бак-аккумулятор с во­дой, является их совместимость с солнечным охлаждением. Воду можно использовать практически для всех типов солнечного ох­лаждения, в том числе для ночного радиационного охлажде­ния, внепикового охлаждения при помощи небольших компрес­соров и циклов Ренкина и абсорбционного охлаждения. Наиболь­шим преимуществом воды в качестве теплоаккумулирующей среды является ее сравнительно низкая стоимость, за исключе­нием тех районов мира, где воды мало. Однако с водой связаны некоторые трудности, решение которых может вызвать значи­тельные затраты.

В последние годы удерживание больших объемов воды (от 100 до 350 м3 на 1 м3 коллектора) до некоторой степени стало проще благодаря появлению надежных гидроизоляционных ма­териалов и больших пластиковых листов. Раньше единственным сосудом был бак из оцинкованной стали, который в конечном счете протекал. Замена крупных баков, которые обычно разме­щаются в подвалах или под землей, является трудным и дорого­стоящим делом. Внедрение стеклофутеровкп и баков из стекло­волокна устранило проблемы коррозии, по увеличило первона-

чальные расходы Применение баков из литого бетона до недав­него времени сдерживалось трудностью и стоимостью обеспече­ния их долговременной герметичности; бетон водопроницаем и подвержен растрескиванию. Однако большие пластиковые ли­сты или мешки могут заменить собой бетон; пластиковые сосу­ды могут поддерживаться легкими деревянными или металличе­скими каркасами.

На рис. 5.83 показаны два способа хранения воды: первый - это наполненный водой бетонный (или шлакоблочный) контей­нер; второй - это система д-ра Гарри Томасона, т. е. бак с во­дой, окруженный камнями. В первом способе теплая вода из бака циркулирует в здание либо непосредственно через радиа­торы или теплоизлучающие панели, либо косвенно через змееви­ковые теплообменники, которые нагревают обтекающий их воз­дух, охлажденный їв помещении. Этот последний способ приме­нили в доме IV при Массачусетском технологическом институте в 1959 г. На рис. 5.84 показано поперечное сечение дома в шт. Вермонт на Среднем Западе, который был спроектирован Сью Бэртон Теннер. Система солнечного теплоснабжения, раз­работанная фирмой «Тотал энвайронментал экшн.», имеет в своем составе коллектор с открытым стоком воды. Теплообмен­ник отбирает тепло от аккумулятора и передает его в дом через большие стеновые и потолочные радиационные панели, позво­ляя использовать воду сравнительно низкой температуры. Вто­рой теплообменник подогревает воду для хозяйственных нужд, поступающую в обычный водонагреватель. Аккумулятор второго типа, изображенный на рис. 5.78, передает тепло медленно, но постоянно от бака с водой к камням. Охлажденный в доме воз­дух медленно циркулирует в больших объемах между нагретыми камнями и возвращается обратно в дом. В обоих случаях самая холодная вода на дне бака поступает в коллектор для подогре­ва, а затем возвращается в верхнюю часть бака. Эта нагретая в коллекторе вода используется для отопления дома.

Распределение температуры внутри водяного бака показано на рис. 5 85 Клоузом . В баке высотой 1 м в начале дня от­мечается температура менее 20° С в 150 мм от дна п почти 35° С в 125 мм от верха. К концу дня эта разница становится несколь­ко меньше и составляет около 8°.

Большие размеры и высокая стоимость теплообменников мо­гут вызвать серьезные возражения против использования водя­ных баков-аккумуляторов. 25-50 т камней в системе Томасона, хотя и будучи дополнительным аккумулятором тепла, являются в некотором смысле чересчур внушительным теплообменником. У типичных металлических теплообменников, погруженных в воду, общая площадь поверхности теплообмена может состав­лять чуть ли не одну треть от площади солнечного коллектора.

Теплообменники необходимы, когда воду в баке невозможно использовать непосредственно для других целей, кроме аккуму-

Рис. 5 84. Коллекто­ры с наружным сто­ком воды и бак-ак­кумулятор в доме, шт. Вермонт (проект архит. Сью Бэртон Теннер с рекоменда­циями фирмы «Тотал энвайронментал экшн»)

1 - коллекторы: 2 - теп­лообменники для радиа­ционного отопления го­рячей водой; 3 - акку­мулятор

лядии тепла. Например, при использовании в коллекторе раст­вора антифриза в "воде он должен проходить через теплообмен­ник во избежание смешивания его с водой в баке. Кроме того, при расчете теплоснабжения здания инженеры по отоплению обычно требуют, чтобы вода из бака не использовалась в отопи­тельной системе. Это особенно показательно для случая, когда вода из бака циркулирует через коллектор.

Ограничение выбора местоположения для больших сосудов с водой может оказаться выгодным для проектировщиков зда-
ний, которые не хотят ломать голову над тем, где установить крупный предмет. Однако для проектировщика, который хочет сделать теплоаккумулятор неотъемлемой частью всего проекта, размещение тяжелого и громоздкого бака может оказаться трудной задачей. Естественно, самосливные системы жидкост­ного типа требуют, чтобы аккумулятор находился ниже дна кол­лектора; термосифонные системы требуют, чтобы он находился выше верхней части коллектора. Если аккумуляционная система связана с другим оборудованием, например с отопителем, насо­сами, теплообменником и бытовыми водонагревателями, то мо­жет потребоваться ее близкое размещение к ним.

Аккумулятор для воздушных систем. Из нескольких тепло­аккумулирующих сред для систем воздушного типа, пожалуй, наиболее известными и употрсбимыми являются камни. Хотя применение этого материала кажется сравнительно дешевым и легким решением, однако такой выбор не всегда правилен. Наи­более существенным преимуществом камней является их низкая стоимость, если действительно камней много. Например, на большей части территории Новой Англии единственным видом камней является гравий диаметром 25-40 мм. В зависимости от конструкции и размеров отсека для камней могут потребовать­ся камни диаметром до 100 мм. На 1 м2 коллектора требуется от 35 до 180 кг камней из-за их малой теплоемкости. Огромное количество камней усложняет проблему их транспортировки и перегрузки, а также требует отсека, достаточного по размеру,

чтобы вместить их При 30% пустот объем камней, необходимый для аккумулирования того же количества тепла, что и бак с во­дой, должен быть в два с половиной раза больше

Большая периметральная площадь этих отсеков-аккумуля­торов влечет за собой более высокие строительные расходы и большие потери тепла Потенциальная возможность более зна­чительных потерь тепла из больших отсеков с камнями по срав­нению с меньшими по размеру водяными баками, тем не менее, компенсируется сравнительно медленным естественным движе­нием тепла через камни в отличие от постоянного движения воды внутри большого сосуда при изменении температуры (на­пример, из-за потери тепла)

Одним из серьезных ограничении в отношении камней яв­ляется недостаточность их универсальности как рабочих тел для других целей помимо аккумулирования тепла, они, например, не могут служить теплоносителем для подогрева воды, охлаж­дения и даже отопления жилого помещения Один из немногих и наиболее распространенных способов приготовления горячей воды в этом случае заключается в установке небольшого (от 100 до 400 дм3) неизолированного водяного бака между камнями. Теплообмен протекает медленно, но продолжается круглые сутки

Методы солнечного охлаждения применимы тогда, когда кам­ни удерживают прохладу для дальнейшего использования Эту прохладу можно получить путем циркуляции холодного ночного воздуха, воздуха, охлажденного ночной радиацией, или воздуха охлажденного внепиковыми холодильными компрессорами Коллекторы воздушного типа, обеспечивающие температуры до­статочно высокие для циклов охлаждения от 80 до 150° С, на­вряд ли будут разрабатываться Оборудование по кондициони­рованию воздуха, которое совместимо скорее с горячим возду­хом, чем с горячей жидкостью в качестве источника тепла, в настоящее время не выпускается

Воздушные системы ограничивают способ передачи тепла окружающему пространству Почти без исключения отопитель ные системы должны иметь принудительную циркуляцию теп­лого воздуха в отличие от теплоаккумуляторов типа водяного бака, где может применяться принудительная циркуляция теп­лой воды или теплого воздуха Однако, как рассматривалось в части III, воздух может циркулировать через камни естествен­ным путем, не нуждаясь в вентиляторах

На рис 5 86 показан сводчатый дом, спроектированный фир­мой «Тотал энвайронментал экшн», в котором отсек с камнями расположен в пределах помещения Передача тепла из отсека в помещение происходит медленно путем естественной конвек­ции из комнаты в нижнюю часть отсека и оттуда через верх, а при необходимости, при помощи небольших вспомогательных вентиляторов (купообразная конструкция была выбрана заказ-

чиком, а отдельно стоящий коллектор указывает иа ограничения использования здания для жилых целей).

Местоположение теплового аккумулятора с камнями может явиться серьезным ограничением их использования. Если акку­мулятор размещается в подвале здания, то расходы на сооруже­ние отсека необязательно должны быть включены в общую стоимость системы солнечного теплоснабжения. Однако если под аккумулятор отводится подвал, предназначенный для других целей, или жилое помещение, то стоимость сооружения такого отсека добавляется к стоимости системы. На рис. 5.87 показано использование контейнера-аккумулятора с засыпкой из камней как части архитектурного элемента здания. В доме Джорджа Лёфа в Денвере этот способ применен довольно удачно. Однако из-за большого веса контейнеров или отсеков для камней под ними должны предусматриваться прочные фундаменты.

На рис. 5.88 представлен разрез дома в Бостоне по проекту фирмы «Тотал энвайронментал экшн», выполненному на средст­ва фирмы «АИА Рисерч корпорейшн» Американского института архитекторов . Площадка для дома представляет собой крутой северный склон холма с высокими зданиями к югу. Кол­лектор устанавливается как можно выше, чтобы не попасть в тень от соседних зданий. Вследствие своих больших размеров и массы теплоаккумулирующий отсек с камнями находится на нижнем этаже здания.

В проекте предусматривается довольно простой способ пе­редачи тепла к отсеку и от него. На рис. 5.89, где показана схема солнечной системы, теплый воздух из коллектора поступает в верхнюю часть отсека. Он затягивается внутрь, выходит снизу и поступает обратно в коллектор. Для обогрева дома прохладный воздух поступает в нижнюю часть отсека и нагревается по мере подъема между камнями. Самые теплые камни наверху нагре­вают воздух до наибольшей степени. На рисунке также показа­ны цикл отопления на жидком топливе, в котором комнатный воздух обходит отсек с камнями. Обычно аккумуляторный отсек не должен нагреваться отопителем, за исключением случаев, когда он располагается внутри жилого помещения.

Одна из важных причин того, что теплый воздух подается из коллектора в верхнюю часть отсека, заключается в стремлении обеспечить температурную стратификацию. Это дает возмож­ность нагревать комнатный воздух до наивысшей возможной температуры при помощи самых теплых камней, находящихся в верхней части отсека. Если теплый воздух будет поступать через низ отсека, даже без перемещения внутри него, то тепло из ниж­ней части распределится равномерно по всему отсеку, что вызо­вет в нем общее понижение температуры. Подача комнатного воздуха в то же место, что и теплого воздуха из коллектора, будет способствовать этому выравниванию тепла по отсеку, а не нагреву воздуха в целях отопления здания.

Рис. 5 89 Схема системы солнечного теплоснабжения для дома в Бостоне }