Тепловая смерть. Теория «тепловой смерти» Вселенной

«Смотри - лучи солнца, не могут пробиться сквозь серое небо
и все твои мысли, молитвы о помощи...
Пути пройдены, нам некуда бежать. И осторожно, касаясь пальцем звезд,
Я понимаю … но, неизбежно то, что слишком поздно…»

Английский физик Уильям Томсон (лорд Кельвин), один из основателей термодинамики в 1852 году выдвинул гипотезу о тепловой смерти Вселенной.

"Тепловая смерть" - это термин в термодинамике, описывающий конечное состояние любой замкнутой термодинамической системы, когда все виды энергии переходят в тепловую энергию. При этом термодинамическая энтропия системы максимальна.

Тогда «тепловая смерть Вселенной» это состояние Вселенной, когда все виды энергии в ней перейдут в энергию теплового движения, которая равномерно распределится по всей Вселенной. После этого все термодинамические процессы во Вселенной должны прекратиться.

Томсон считал, что материальная Вселенная, то есть звезды, планеты и прочие небесные тела, является единой, замкнутой, изолированной системой. Ведь другой такой же Вселенной нет. А если так, то второе начало термодинамики полностью применимо ко всему космосу и, стало быть, в конце концов наш разнообразный и веселый мир ждет унылая «тепловая смерть»...

В 1865 году известный физик Р. Клаузиус , основываясь на втором законе термодинамики сделал теоретический вывод о тепловой смерти Вселенной. Согласно второму началу термодинамики, любая замкнутая физическая система, т. е. не обменивающаяся энергией с другими системами, стремится к наиболее вероятному равновесному состоянию, т.е. к состоянию теплового равновесия, что соответствует максимуму энтропии.

Рудольф Клаузиус утверждал, что хотя энергия некоторой системы и остается постоянной (первое начало термодинамики), однако с течением времени она лишается способности к превращениям, а значит и способности совершать работу. Это означает, что всякая термодинамическая система со временем "деградирует", наступает "тепловая смерть".

Он согласился с выводом Томсона и написал: «.. энтропия Вселенной стремится к некоторому максимуму. Чем больше Вселенная приближается к этому предельному состоянию, ...тем больше исчезают поводы к дальнейшим изменениям, а если это состояние было бы наконец-то достигнуто, то больше не происходило бы никаких дальнейших изменений, и Вселенная находилась бы в некотором мертвом состоянии инерции».

Теория «тепловой смерти» находилась в противоречии с ньютоновской вечной Вселенной. Действительно, если рассмотреть Вселенную как изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею уже максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Попытка избежать указанного противоречия гипотезы тепловой смерти Вселенной была предпринята Больцманом , который предположил, что у системы и в состоянии термодинамического равновесия могут наблюдаться небольшие изменения - флуктуации термодинамических параметров (температуры, давления, объема).

Вселенная с энергетической точки зрения уже мертва, но отдельные ее области подвержены флуктуациям.

И наша часть бесконечной Вселенной, все пространство, до которого достигает взгляд человека, находится в режиме огромной, ныне затухающей флуктуации. А если считать, что наблюдаемая Вселенная является следствием такой флуктуации, то противоречия парадокса о тепловой смерти Вселенной исчезают.

В 1909 году против тепловой смерти выступил известный шведский ученый Сванте Август Аррениус , занимавшийся вопросами образования и эволюции небесных тел.

Аррениус писал: «Если бы Клаузиус был прав, то эта «смерть тепла» за бесконечно долгое время существования мира давно бы уже наступила, чего, однако, не случилось. Или нужно допустить, что мир существует не бесконечно долго и что он имел свое начало; это, однако, противоречит первой части положения Клаузиуса, устанавливающей, что энергия мира постоянна, - ибо тогда пришлось бы допустить, что вся энергия возникла в момент творения».

В 20 веке Общая Теория Относительности А. Эйнштейна разрешила многие противоречия, существовавшие в классической физике.

Однако и в наше время в науке нет единого мнения о строении Вселенной и ее возникновении. Хотя современной космологией однозначно установлено , что Вселенная, возраст которой определен в 13,72 млрд лет, не стационарна.

Среди ученых не утихают споры о будущем Вселенной, о ее «бесконечном расширении», о существовании «скрытой материи», огромное количество которой может опровергнуть современные представления о свойствах Вселенной.

А понятие «тепловой смерти Вселенной» стало первым шагом к осознанию возможной конечности существования Вселенной, хотя и неизвестно, когда и по какому сценарию возможна её гибель.

Ограничение области знания лишь небольшой группой людей ослабляет философский дух народа и ведет к духовному обнищанию.

А. Эйнштейн

Классическая термодинамика оказалась не способной решить и космологические проблемы характера протекания процессов, происходящих во Вселенной. Уильям Томпсон экстраполировал принцип возрастания энтропии на крупномасштабные процессы, протекающие в природе. На основе этого Р. Клаузиус распространил этот принцип на Вселенную в целом, что привело его к гипотезе о "тепловой смерти Вселенной". Все физические процессы, согласно второму началу термодинамики, протекают в направлении передачи тепла от более горячих тел к менее горячим. Это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, будущее вырисовывается перед нами в достаточно трагических тонах:

ожидается исчезновение температурных различий в природе и превращение всей мировой энергии в теплоту, равномерно распределенную во Вселенной. Отсюда Клаузиус выдвинул два постулата:

    Энергия Вселенной всегда постоянна.

    Энтропия Вселенной всегда растет к максимуму.

Если принять второй постулат, то необходимо признать, что процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующего максимуму энтропии, а следовательно, состояния, характеризуемого наибольшей степенью хаоса, беспорядка и дезорганизации. В таком случае во Вселенной наступит тепловая смерть и никакой полезной работы в ней произвести будет нельзя.

Вытекающий отсюда вывод о грядущей тепловой смерти Вселенной, означает прекращение каких-либо физических процессов вследствие перехода Вселенной в равновесное состояние с максимальной энтропией. На протяжении всего дальнейшего развития этот вывод привлекает внимание ученых, ибо затрагивает не только глубинные проблемы чисто научного характера, но также философско-мировоззренческие аспекты, указывающие определенную верхнюю границу возможного существования человечества. Такие мрачные прогнозы встретили критику со стороны ряда выдающихся ученых. Однако в середине XIX в. мало было научных аргументов для опровержения мнения Р. Клаузиуса. Только единицы догадывались, что понятие закрытой, или изолированной, системы является далеко идущей абстракцией, не отражающей реальный характер систем, которые встречаются в природе.

С научной точки зрения возникают проблемы правомерности следующих экстраполяций, высказанных Клаузиусом:

    Вселенная рассматривается как замкнутая система.

    Эволюция мира может быть описана как смена его состояний.

    Для мира как целого состояние с максимальной энтропией имеет смысл, как и для любой конечной системы.

Проблемы эти представляют несомненную трудность и для современной физической теории. Решение их следует искать в общей теории относительности и развивающейся на ее основе современной космологии. Многие теоретики считают, что в общей теории относительности мир как целое должен рассматриваться не как замкнутая система, а как система, находящаяся в переменном гравитационном поле. В связи с этим применение закона возрастания энтропии не приводит к выводу о необходимости в нем статистического равновесия.

Проблему будущего развития Вселенной пытался разрешить и Больцман, применивший к замкнутой Вселенной понятие флуктуации. Под флуктуацией какой-то физической величины понимается отклонение истинного значения данной величины от ее среднего значения, обусловленного, например, хаотическим тепловым движением частиц системы. Больцман принял ограничение Максвелла, согласно которому для небольшого числа частиц второе начало термодинамики не должно применяться, ибо в случае небольшого числа молекул нельзя говорить о состоянии равновесия системы. При этом он использует это ограничение для Вселенной, рассматривая видимую часть Вселенной как небольшую область бесконечной Вселенной. Для такой небольшой области допустимы небольшие флуктуационные отклонения от равновесия, благодаря чему в целом исчезает необратимая эволюция Вселенной в направлении к хаосу.

К сожалению, мечта Больцмана не сбылась в полной мере. Ему не удалось найти ключ к объединению динамики и второго начала термодинамики, а предлагаемая флуктуационная модель эволюции Вселенной имела всего лишь характер гипотезы. Скептическое отношение многих ученых к атомистической теории Больцмана (сам он был убежден в том, что отстаиваемое им учение об атомах завоюет признание через много десятков лет), трудности с определением роли второго начала термодинамики в системе естествознания, а возможно, и ряд других причин привели этого замечательного ученого к трагическому концу. В 1906 году он покончил жизнь самоубийством.

XX век вносит коррективы в изучение проблем эволюции Вселенной. Формируется новое междисциплинарное направление - синергетика, и на его основе возникает теория самоорганизации сложных систем. В отличие от закрытых, или изолированных, реальными системами в природе являются открытые системы. Они обмениваются с окружающей средой энергией, веществом и информацией. Опыт и практическая деятельность свидетельствовали, что понятие закрытой, или изолированной, системы представляет собой далеко идущую абстракцию и потому она слишком упрощает и углубляет действительность, поскольку в ней трудно или даже невозможно найти системы, которые бы не взаимодействовали с окружающей средой. Поэтому в новой термодинамике место закрытой изолированной системы заняло принципиально иное фундаментальное понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией и информацией.

Открытая система не может быть равновесной, потому что ее функционирование требует непрерывного поступления из внешней среды энергии или вещества, богатого энергией. В результате такого взаимодействия система, как указывал Эрвин Шредингер, извлекает порядок из окружающей среды и тем самым вносит беспорядок в эту среду. В открытых системах также производится энтропия, поскольку в них происходят необратимые процессы, но энтропия в этих системах не накапливается, как в закрытых системах, а выводится в окружающую среду. Поскольку энтропия характеризует степень беспорядка в системе, постольку можно сказать, что открытые системы живут за счет заимствования энергии или вещества из внешней среды. Очевидно, что с поступлением новой энергии или вещества неравновесность в системе возрастает. В конечном счете прежняя взаимосвязь между элементами системы, которая определяет ее структуру, разрушается. Между элементами системы возникают новые связи, которые приводят к кооперативным процессам, т. е. к коллективному поведению ее элементов. Так, схематически могут быть охарактеризованы процессы самоорганизации открытых систем.

Как отмечает основоположник теории самоорганизации И. Р. Пригожин, переход от термодинамики равновесных состояний к термодинамике неравновесных процессов, несомненно, знаменует прогресс в развитии ряда областей науки.

ВЫВОДЫ

1. Детерминизм - это учение о всеобщей закономерной связи явлений и процессов в окружающем мире. Причинность является одной из форм проявления детерминизма. Исторически в науке сложились два основных типа причинно-следственных связей и соответственно два типа закономерностей - динами ческие и статистические (вероятностные).

2. Современную концепцию детерминизма можно сформиро вать следующим образом: динамические законы представляют собой первый, низший этап в процессе познания окружающего нас мира; статистические законы более совершенно отображают объективные связи в природе: они являются следующим, более высоким этапом познания.

3. Наиболее ярко динамический и статистический де терминизм проявляется при рассмотрении тепловых про цессов. Динамический подход характерен термодинамике. Молекулярно-кинетическая теория использует статистичес кий метод, интересуясь не движением отдельных молекул, а только средними величинами, которые характеризуют дви жение огромной совокупности частиц. Поэтому при изучении тепловых явлений в науке используют два направления: статистические законы и термодинамические законы, изуча ющие тепловые процессы без учета молекулярного строения вещества.

4. Если к системе подводится тепло и над ней производится работа, то энергия системы возрастает до величины, равной сумме этих величин. Невозможно осуществить процесс, единс твенным результатом которого было бы превращение тепла в работу при постоянной температуре. Тепло не может перетечь самопроизвольно от холодного тела к горячему.

    Энтропия есть мера неупорядоченности системы. Энтропия замкнутой системы, т. е. системы, которая не обменивается с окружением ни энергией, ни веществом, постоянно возрастает.

    Основываясь на связи энтропии с вероятностью, Больцман сформулировал, что природа стремится перейти из состояния менее вероятного в состояние более вероятное. Энтропия системы, находящейся в равновесном состоянии, максимальна и постоянна.

    Второе начало термодинамики устанавливает в природе наличие фундаментальных асимметрий, т. е. однонаправленности всех происходящих самопроизвольных процессов. Об этой асимметрии, выделенной Клаузиусом и Кельвином, говорят все окружающие нас явления. Хотя количество энергии в замкнутых системах сохраняется, распределение энергии меняется необратимым способом. Распространение принципа возрастания энтропии на всю Вселенную привело Клаузиуса и Кельвина к гипотезе "тепловой смерти Вселенной".

    Большинство систем являются открытыми, т. е. обменивающимися энергией или веществом с окружающей средой, поэтому понятие термодинамики расширялись для открытых систем. Энтропия в открытых системах может возникать и переноситься.

    В стационарных неравновесных состояниях производится минимальная величина энтропии, что отражает внутреннюю инерцию и устойчивость систем, поэтому, если какие-то внешние условия не позволяют системе перейти в устойчивое равновесие, она перейдет в стационарное с минимальным производством энтропии - теорема Пригожина.

Вопросы для контроля знаний

    Чем отличаются универсальные законы от статистических?

    Почему лапласовский детерминизм оказался несостоятельным?

    Почему причинность не совпадает с детерминизмом в целом?

    Как можно было бы определить современный детерминизм?

    Какие процессы называются обратимыми?

    Что выражает первый закон термодинамики?

    Дайте простую формулировку второго закона термодинамики.

    Как можно сформулировать этот же закон с помощью понятия энтропии?

    Как происходит эволюция в закрытых системах?

    Кто впервые выдвинул идею "тепловой смерти Вселенной" и в чем ее несостоятельность по современным представлениям?

    Как происходит самоорганизация в открытых системах?

Тепловая смерть Вселенной («Теплова́я смерть» Вселе́нной,)

ошибочный вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиус ом (1865) на основе второго начала термодинамики (См. Второе начало термодинамики). Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии (См. Энтропия). Такое состояние соответствовало бы «Т. с.» В. Ещё до создания современной космологии (См. Космология) были сделаны многочисленные попытки опровергнуть вывод о «Т. с.» В. Наиболее известна из них флуктуационная гипотеза Л. Больцман а (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Современной космологией установлено, что ошибочен не только вывод о «Т. с.» В., но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физические факторы и прежде всего Тяготение . С учётом тяготения однородное изотермическое распределение вещества вовсе не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермическому состоянию Вселенной - к «Т. с.» В. Вселенная всегда нестатична и непрерывно эволюционирует.

Лит.: Зельдович Я. Б., Новиков И. Д., Строение и эволюция Вселенной, М.,1975.

И. Д. Новиков.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Тепловая смерть Вселенной" в других словарях:

    Гипотеза, выдвинутая Р. Клаузиусом (R. Clausius, 1865) как экстраполя ция второго начала термодинамики на всю Вселенную. Согласно Клаузиусу, энергия мира постоянна, энтропия мира стремится к максимуму. Т. е. Вселенная должна прийти в состояние… … Физическая энциклопедия

    ТЕПЛОВАЯ СМЕРТЬ ВСЕЛЕННОЙ - ошибочный вывод, сделанный в XIX в. на основе второго начала термодинамики (см.), о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после… … Большая политехническая энциклопедия

    Уильям Томсон − в 1852 году выдвинул гипотезу о ТСВ Тепловая смерть термин, описывающий конечное состояние любой замкнутой термодинамической … Википедия

    Уильям Томсон − в 1852 году открыл ТСВ Тепловая смерть термин, описывающий конечное состояние любой замкнутой термодинамической системы, и Вселенной в частности. При этом никакого направленного обмена энергией наблюдаться не будет, так как все… … Википедия

    Гипотетич. состояние мира, к к рому якобы должно привести его развитие в результате превращения всех видов энергии в тепловую и равномерного распределения последней в пространстве; в таком случае Вселенная должна прийти в состояние однородного… … Философская энциклопедия

    «Тепловая смерть Вселенной» - ошибочный вывод о том, что все виды энергии во Вселенной, в конце концов, должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы. Этот вывод … Концепции современного естествознания. Словарь основных терминов

    Ошибочный вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, к рая равномерно распределится по в ву Вселенной, после чего в ней прекратятся все макроскопич. процессы. Этот вывод был… … Физическая энциклопедия

    Сценарий Большого сжатия Будущее Вселенной вопрос, рассматриваемый в рамках физической космологии. Различными научными теориями предсказано множество возможных вариантов будущего, среди которых есть мнения как об уничтожении, так и о… … Википедия

    У этого термина существуют и другие значения, см. Конец света (значения). Гибель человечества в представлении художника (см. также … Википедия

    В космологии, Большое сжатие (англ. Big Crunch) один из возможных сценариев будущего Вселенной, в котором расширение Вселенной со временем меняется на сжатие и вселенная коллапсирует, в конце концов схлопываясь в сингулярность. Обзор … Википедия

Книги

  • Миры Ктулху , Лавкрафт Говард Филлипс. Проза Лавкрафта - идеальное отражение внутреннего мира человека в состоянии экзистенциального кризиса: космос холоден и безразличен, жизнь конечна, в словах и поступках нет никакого высшего…

Введение

1. Понятие Вселенной

2. Проблема тепловой смерти Вселенной

2.2 "За" и "против" теории тепловой смерти

Заключение


Введение

В данной работе мы поговорим о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти». В данной работе мы и рассмотрим его.


A что такое Вселенная? Ученые под этим термином понимают максимально большую область пространства, включающую в себя как все доступные для изучения небесные тела и их системы, т.е. как Метагалактику, так и возможное окружение, еще влияющее на характер распределения и движения тел в ее астрономической части.

Известно, что Метагалактика находится в состоянии приблизительно однородного и изотропного расширения. Все галактики удаляются друг от друга со скоростью тем большей, чем больше расстояние между ними. С течением времени скорость этого расширения уменьшается. На расстоянии 15-20 миллиардов световых лет удаление происходит со скоростью, близкой к скорости света. По этой и ряду других причин, мы не можем видеть более далекие объекты. Существует как бы некий «горизонт видимости». Вещество на этом горизонте находится в сверхплотном («сингулярном», т.е. особом) состоянии, в каком оно было в момент условного начала расширения, хотя на этот счет имеются и другие предположения. Из-за конечности скорости распространения света (300000 км/с) мы не можем знать, что происходит на горизонте сейчас, но некоторые теоретические расчеты позволяют думать, что за пределами горизонта видимости вещество распределено в пространстве примерно с той же плотностью, что и внутри него. Именно это и приводит как к однородному расширению, так и к наличию самого горизонта. Поэтому часто Метагалактику не ограничивают видимой частью, а рассматривают как сверхсистему, отождествленную со всей Вселенной в целом, считая ее плотность однородной. В простейших космологических построениях рассматривают два основных варианта поведения Вселенной – неограниченное расширение, при котором средняя плотность вещества с течением времени стремится к нулю, и расширение с остановкой, после которой Метагалактика должна начать сжиматься. В общей теории относительности показывается, что наличие вещества искривляет пространство. В модели, где расширение сменяется сжатием, плотность достаточно высока и кривизна оказывается такой, что пространство «замыкается на себя», подобно поверхности сферы, но в мире с большим, чем «у нас», числом измерений. Наличие горизонта приводит к тому, что даже этот пространственно конечный мир мы не можем видеть целиком. Поэтому с точки зрения наблюдений замкнутый и открытый мир различаются не очень сильно.

Скорее всего, реальный мир устроен сложнее. Многие космологи предполагают, что существует несколько, может быть, даже очень много метагалактик и все они вместе могут представлять какую-то новую систему, являющуюся частью некоторого еще более крупного образования (может быть, принципиально иной природы). Отдельные части этого гипермира (вселенные в узком смысле) могут иметь совершенно различные свойства, могут быть не связаны друг с другом известными нам физическими взаимодействиями (или быть слабо связанными, что имеет место в случае так называемого полузамкнутого мира). В этих частях гипермира могут проявляться иные законы природы, а фундаментальные константы типа скорости света могут иметь другие значения или вообще отсутствуют. Наконец, в таких вселенных может быть не такое, как у нас, число пространственных измерений.


2.1 Второй закон термодинамики

Согласно второму закону (началу) термодинамики, процессы, происходящие в замкнутой системе, всегда стремятся к равновесному состоянию. Иными словами, если нет постоянного притока энергии в систему, идущие в системе процессы стремятся к затуханию и прекращению.

Идея о допустимости и даже необходимости применения второго закона термодинамики ко Вселенной как целому принадлежит В. Томсону (лорду Кельвину), который опубликовал ее еще в 1852 г. Несколько позже Р. Клаузиус сформулировал законы термодинамики в применении ко всему миру в следующем виде: 1. Энергия мира постоянна. 2. Энтропия мира стремится к максимуму.

Максимальная энтропия как термодинамическая характеристика состояния соответствует термодинамическому равновесию. Поэтому обычно интерпретация этого положения сводилась (часто сводится и сейчас) к тому, что все движения в мире должны превратиться в теплоту, все температуры выровняются, плотность в достаточно больших объемах должна стать всюду одинаковой. Это состояние и получило название тепловой смерти Вселенной.

Реальное разнообразие мира (кроме, разве что, распределения плотности на самых больших ныне наблюдаемых масштабах) далеко от нарисованной картины. Но если мир существует вечно, состояние тепловой смерти уже давно должно было бы наступить. Полученное противоречие получило название термодинамического парадокса космологии. Чтобы его ликвидировать, нужно было допустить, что мир существует недостаточно долго. Если говорить о наблюдаемой части Вселенной, а также о ее предполагаемом окружении, то это, по-видимому, так и есть. Мы уже говорили о том, что она находится в состоянии расширения. Возникла она скорее всего в результате взрывообразной флуктуации в первичном вакууме сложной природы (или, можно сказать, в гипермире) 15 или 20 миллиардов лет назад. Астрономические объекты – звезды, галактики – возникли на более поздней стадии расширения из первоначально почти строго однородной плазмы. Однако по отношению к далекому будущему вопрос остается. Что ждет нас или наш мир? Наступит рано или поздно тепловая смерть или же этот вывод теории по каким-то причинам неверен?

2.2 «За» и «против» теории тепловой смерти

Многие выдающиеся физики (Л. Больцман, С. Аррениус и др.) категорически отрицали возможность тепловой смерти. Вместе с тем даже и в наше время не менее крупные ученые уверены в ее неизбежности. Если говорить о противниках, то, за исключением Больцмана, обратившего внимание на роль флуктуаций, их аргументация была скорее эмоциональной. Лишь в тридцатые годы нашего столетия появились серьезные соображения относительно термодинамического будущего мира. Все попытки решения термодинамического парадокса можно сгруппировать в соответствии с тремя основными идеями, положенными в их основу:

1. Можно думать, что второй закон термодинамики неточен или же неверна его интерпретация.

2. Второй закон верен, но неверна или неполна система остальных физических законов.

3. Все законы верны, но неприменимы ко всей Вселенной из-за каких-то ее особенностей.

В той или иной мере все варианты могут быть использованы и действительно используются, хотя с разным успехом, для опровержения вывода о возможной тепловой смерти Вселенной в сколь угодно удаленном будущем. По поводу первого пункта заметим, что в «Термодинамике» К.А. Путилова (М., Наука, 1981) приводится 17 различных определений энтропии, не все из которых эквивалентны. Мы скажем лишь, что если иметь в виду статистическое определение, учитывающее наличие флуктуаций (Больцман), второй закон в формулировке Клаузиуса и Томсона действительно оказывается неточным.

Закон возрастания энтропии, оказывается, имеет не абсолютный характер. Стремление к равновесию подчинено вероятностным законам. Энтропия получила математическое выражение в виде вероятности состояния. Таким образом, после достижения конечного состояния, которое до сих пор предполагалось соответствующим максимальной энтропии Smax, система будет находиться в нем более продолжительное время, чем в других состояниях, хотя последние неизбежно будут наступать из-за случайных флуктуаций. При этом крупные отклонения от термодинамического равновесия будут значительно более редкими, чем небольшие. На самом деле состояние с максимальной энтропией достижимо только в идеале. Эйнштейн отметил, что «термодинамическое равновесие, строго говоря, не существует». Из-за флуктуаций энтропия будет колебаться в каких-то небольших пределах, всегда ниже Smax. Ее среднее значение будет соответствовать больцмановскому статистическому равновесию. Таким образом, вместо тепловой смерти можно было бы говорить о переходе системы в некоторое «наиболее вероятное», но все же конечное статистически равновесное состояние. Считается, что термодинамическое и статистическое равновесие – практически одно и то же. Это ошибочное мнение опроверг Ф.А. Цицин, показавший, что различие в действительности весьма велико, хотя о конкретных значениях разницы мы здесь говорить не можем. Важно, что любая система (например, идеальный газ в сосуде) рано или поздно будет иметь не максимальное значение энтропии, а скорее , соответствующее, как будто, сравнительно малой вероятности. Но здесь дело в том, что энтропию имеет не одно состояние, а громадная их совокупность, которую лишь по небрежности называют единым состоянием. Каждое из состояний с имеет и в самом деле малую вероятность осуществления, и поэтому в каждом из них система не задерживается долго. Но для их полного набора вероятность получается большой. Поэтому совокупность частиц газа, достигнув состояния с энтропией, близкой к , должна довольно быстро перейти в какое-то другое состояние с примерно той же энтропией, затем в следующее и т.д. И хотя в состоянии, близком к Smax, газ будет проводить больше времени, чем в любом из состояний с , последние вместе взятые становятся более предпочтительными.

Второй закон (начало) термодинамики говорит о том, что внутренняя энергия тепла (теплота) не может самостоятельно переходить от менее нагретого объекта к более нагретому объекту.

В результате Второго закона термодинамики любая физическая система, не обменивающаяся энергией с другими системами, стремится к самому вероятному состоянию равновесия - к состоянию с наибольшей энтропией (величина характеризующая степень неупорядоченности и теплового состояния физической системы). Этот закон впервые был описан Сади Карно в 1824 году. Как следствие этого, уже в 1852 году Уильям Кельвин предложил гипотезу о грядущей в будущем “тепловой смерти Земли“ в ходе процесса остывания нашей планеты до безжизненного состояния. В 1865 году Рудольф Клаузиус распространил эту гипотезу уже на всю Вселенную.

В 1872 году австрийский физик Людвиг Больцман попытался количественно оценить энтропию с помощью формулы S = k * ln W (где, S - энтропия, k - константа Больцмана, W - количество микросостояний, реализующих макросостояние. Микросостояние - это состояние отдельной составляющей системы, а макросостояние - состояние системы в целом.

Ещё большим свидетельством справедливости гипотезы стало открытие – теплового излучения Вселенной, возникшего во время рекомбинации (соединения протонов и электронов в атомы) первичного водорода, которое случилось через 379 тысяч лет. Процесс рекомбинации происходит при температурах в 3 тысячи Кельвинов, в то же время текущая температура реликтового излучения, определенная по его максимуму составляет только 2.7 Кельвинов. Изучение реликтового излучения показало, что оно является изотропным (однородным) для любого направления на небе на уровне в 99.999%.

Астрономические наблюдения позволяют построить т.н. диаграмму Мадо («Madau-diagram»), которая показывает зависимость темпа звездообразования в зависимости от .

Изучение статистики квазаров (ядер активных галактик) позволяет независимо оценить темп звездообразования. Обзор 2DF, проведенный в 1997-2002 году на австралийском телескопе ААТ изучил около 10 тысяч квазаров на площади неба в 1.5 тысяч квадратных градусов в областях обоих галактических полюсов.

Другим доказательством верности теории будущей “тепловой смерти Вселенной“ стали исследования ядерной физики, которые показали, что энергия связи нуклонов (протонов и нейтронов) в ядре растет по мере увеличения их числа в ядре большинства химических элементов.

Следствием этой зависимости стало то, что термоядерные реакции слияния с участием более легких химических элементов (к примеру, водорода и гелия) приводят к выделению значительно большего количества энергии в недрах звезд, чем термоядерные реакции с участием более тяжелых химических элементов. Кроме того теоретические исследования в конце 20 века предположили, что и не являются вечными, а постепенно испаряются под действием (гипотетическое излучение черных дыр, которое преимущественно состоит из фотонов).

Аргументы против гипотезы “тепловой смерти“ Вселенной

Сомнения в справедливости гипотезы неизбежной “тепловой смерти Вселенной” в будущем можно разделить на несколько моментов (см. иллюстрацию теории Большого разрыва Вселенной).

Существует неопределенность в прогнозировании будущих изменений объема нашей Вселенной. Существует как теория Большого разрыва Вселенной (ускоренного расширения Вселенной до бесконечности), так и теория Большого сжатия Вселенной (в будущем Вселенная начнет сжиматься). Неопределенность между этими вариантами вызвана недавними открытиями загадочной темной материи и энергии.

Существует неопределенностью в вопросе количества существующих Вселенных, и возможности связи между ними. С одной стороны фотометрический парадокс (парадокс Шезо - Ольберса) темного неба говорит о конечности размера и возраста нашей Вселенной, а так же об отсутствии её связи с другими Вселенными.

С другой стороны из принципа заурядности (принципа Коперника) следует, что наша Вселенная не уникальна, и должно существовать бесконечное множество других Вселенных с другим набором физических констант. Кроме того современная физика допускает существование пространственно-временных туннелей (кротовых нор) между разными Вселенными.

При охлаждении обычного вещества (переходе его в твердое состояние) его энтропия не увеличивается, а наоборот уменьшается:

Ключевыми моментами теории “тепловой смерти” Вселенной является возможность распада протона и существование “излучения Хокинга“, но эти гипотетические явления пока не доказаны экспериментально.

Существует большая неопределенность в вопросе влияния жизни и разума на динамику энтропии Вселенной. В вопросе влияния неразумных жизненных форм на энтропию Вселенной мало сомнений, что жизнь уменьшает энтропию. В качестве доказательств этого можно привести факты более сложной природы живых организмов по сравнению с любыми неорганическими химическими веществами. Поверхность нашей планеты за счет биосферы выглядит куда более разнообразной по сравнению с “мертвой“ поверхностью , или . Кроме того простейшие живые организмы замечены в деятельности по обогащению земной атмосферы кислородом (биогенный кислород), а так же генерированию богатых месторождений полезных ископаемых (биогенез).

В то же время остаётся без ответа вопрос о том, увеличивает или уменьшает энтропию Вселенной разумная жизнь (то есть человек)? С одной стороны человеческий мозг является наиболее сложной формой из известных среди живых организмов, как и то, что научно-технический прогресс позволил людям достичь невиданных высот в познании и конструирование, в том числе в синтезировании химических элементов и элементарных частиц, которых не наблюдается в природе. Современная человеческая цивилизация способна предотвращать крупные природные катастрофы (лесные пожары, наводнения, массовые эпидемии и т.д.) и в шаге от возможности предотвращения катастроф планетарного масштаба (падения небольших астероидов и комет).

С другой стороны человеческая цивилизация выделяется и “энтропийными“ тенденциями. Растет разрушительная мощь оружейных арсеналов вместе с увеличением числа опасных химических и ядерных производств, горная промышленность всего за десятилетия способна опустошить месторождения полезных ископаемых, которые накапливались на планете многие сотни миллионов лет. Развитие сельского хозяйства привело к обезлесению большей части поверхности нашей планеты, а так же способствует деградации почв и опутыванию. Браконьерство, выбросы парниковых газов (возможное окисление океана) и т.д. быстро сокращают биоразнобразие нашей планеты, в связи, с чем экологи причисляют нынешнее время к новому массовому вымиранию. Кроме того в последние десятилетия отмечено сильное снижение рождаемости и в наиболее развитых странах, не исключено что эта демографическая ситуация стала следствием запредельного усложнения быта человеческой цивилизации.

В связи со всеми этими тенденциями, ближайшее будущее человеческой цивилизации представляет собой огромное количество возможных вариантов: начиная от эпической картины космической колонизации всей галактики вместе со строительством сфер Дайсона, расцветом искусственного интеллекта и установлением контакта с внеземными цивилизациями вплоть до отката в вечное средневековье на планете с подорванными минеральными и биологическими ресурсами. Парадокс Ферми (Великое молчание Вселенной) добавляет ещё больше неопределенности в вопросе влияния жизни и разума на динамику энтропии Вселенной, так как существует огромный диапазон для его объяснения: от огромной редкости биосфер и разумных цивилизаций во Вселенной до гипотезы, что наша Земля представляет собой некий “заповедник“ или “матрицу“ в мире разумных сверхцивилизаций.

Современное представление о “тепловой смерти“ Вселенной

В настоящее время физики рассматривают следующую последовательность эволюции Вселенной в будущем при условии её дальнейшего расширения с текущей скоростью:

  • 1-100 триллионов (1012) лет – завершение процессов образования звезд во Вселенной и угасание даже самых поздних красных карликов. После этого момента во Вселенной останутся только звездные остатки: черные дыры, нейтронные звезды и белые карлики.
  • 1 квадратиллионов (1015) лет – все планеты покинут свои орбиты вокруг звезд в связи с гравитационными возмущениями от близких пролетов других звезд.
  • 10-100 квинтиллионов (1018) лет – все планеты, коричневые карлики и звездные остатки покинут свои галактики по причине постоянных гравитационных возмущений друг от друга.
  • 100 квинтиллионов (1018) лет – приблизительное время падения Земли на Солнце по причине излучения гравитационных волн, в случае если бы Земля пережила стадию красного гиганта и осталась бы на своей орбите.
  • 2 анвигинтиллиона (1066) лет – приблизительное время полного испарения черной дыры массой с Солнце.
  • 17 септдециллиардов (10105) лет – приблизительное время полного испарения черной дыры массой в 10 триллионов масс Солнца. Это время окончания эпохи черных дыр.

В дальнейшем будущее Вселенной распадается на два возможных варианта в зависимости от того является ли протон стабильной элементарной частицей или нет:

  • А) Протон является нестабильной элементарной частицей;
  • А1) 10 дециллионов (1033) лет – наименьшее возможное время полураспада протона согласно экспериментам ядерных физиков на Земле;
  • А2) 2 ундециллиона (1036) лет – наименьшее возможное время распада всех протонов во Вселенной;
  • А3) 100 додециллионов (1039) лет – наибольшее возможное время полураспада протона, которое следует из гипотезы, что Большой взрыв объясняется инфляционными космологическими теориями, и что распад протона вызван тем же процессом, который ответственен за преобладание барионов над антибарионами в ранней Вселенной;
  • А4) 30 тредециллионов (1041) лет – максимальное возможное время распада всех барионов во Вселенной. После этого времени должна начаться эпоха черных дыр, так как они останутся единственными существующими небесными объектами во Вселенной;
  • А5) 17 септдециллиардов (10105) лет – примерное время полного испарения даже наиболее массивных черных дыр. Это время окончания эпохи черных дыр, и наступления эпохи вечной тьмы, в которой все объекты Вселенной распались до субатомных частиц и замедлились до наименьшего энергетического уровня.

Б) Протон стабильная элементарная частица;

Б1) 100 вигинтиллионов (1063) лет – время, за которое все тела в твердой форме даже при абсолютном нуле превратятся в “жидкообразное” состоянии, вызванное эффектом квантового туннелирования – миграцией в другие части кристаллической решетки;

Б2) 101500 лет – появление гипотетических железных звезд по причине процессов холодного нуклеосинтеза, идущего путём квантового туннелирования, в ходе которого легкие ядра преобразуются в наиболее стабильный изотоп – Fe56 (по другим сведениям самым стабильным изотопом является никель-62, который обладает наиболее высокой энергией связи.). Одновременно тяжелые ядра также превращаются в железо по причине радиоактивного распада;

Б3) 10 в 1026 – 10 в 1076 лет – оценка диапазона времени в течение которого все вещество во Вселенной аккрецирует в черные дыры.

Эпоха черных дыр

И в заключение можно отметить предположение, что после 10 в 10120 лет все вещество во Вселенной достигнет минимального энергетического состояния. То есть это и будет гипотетическое наступление “тепловой смерти“ Вселенной. Кроме того у математиков существует понятие времени возврата Пуанкаре.

Это понятие означает вероятность того, что рано или поздно любая часть системы вернется в свое первоначальное состояние. Хорошей иллюстрацией этого понятия является вариант, когда в сосуде, разделенном на две части перегородкой, в одной из частей находится некий газ. Если убрать перегородку, то все равно рано или поздно наступит время, когда все молекулы газа окажутся в исходной половине сосуда. Для нашей Вселенной время возврата Пуанкаре оценивается фантастически большой величиной.

Теория “тепловой смерти“ Вселенной стала популярна и в массовой культуре. Хорошей иллюстрацией этой теории стал клип группы Комплексные числа: “Неизбежность”, а так же научно-фантастический рассказ Айзека Азимова “Последний вопрос”.

Понравилась запись? Расскажи о ней друзьям!