Традиционная энергетика и ее характеристика. Традиционная энергия

Общая характеристика современного энергетического производства

Энергетика область общественного производства, охватывающая добычу энергетических ресурсов, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Энергосистема совокупность энергетических ресурсов; всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

В энергосистему входят:

· электроэнергетическая система;

· система нефте- и газоснабжения;

· система угольной промышленности;

· ядерная энергетика;

· нетрадиционная энергетика.

Из всех вышеперечисленных в Республике Беларусь наиболее представлена электроэнергетическая система.

Электроэнергетическая система –совокупность взаимосвязанных единством схем и режимов оборудования и установок по производству, преобразованию и доставке конечным потребителям электрической энергии. Электроэнергетическая система включает в себя электрические станции подстанции, линии электропередачи, центры потребления электрической энергии.

Энергетика – одна из форм природопользования. В перспективе, с точки зрения технологии, технически возможный объем получаемой энергии практически неограничен, однако энергетика имеет существенные ограничения по термодинамическим
(тепловым) лимитам биосферы. Размеры этих ограничений близки к количеству энергии, усваиваемой живыми организмами биосферы в совокупности с другими энергетическим процессами, идущими на поверхности Земли. Увеличение этих количеств энергии, вероятно, катастрофично или, во всяком случае, кризисно отразится на биосфере.

Наиболее часто в современной энергетике выделяют традиционную энергетику, основанную на использовании органического и ядерного топлива, и нетрадиционную энергетику, основанную на использовании возобновляемых и неисчерпаемых источников энергии .

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии – электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.

Производство энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства, в котором можно выделить пять стадий :

1. Получение и концентрация энергетических ресурсов : добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т.д.;

2. Передача энергетических ресурсов к установкам, преобразующим энергию ; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т.д.;



3. Преобразование первичной энергии во вторичную , имеющую наиболее удобную для распределения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию);

4. Передача и распределение преобразованной энергии ;

5. Потребление энергии , осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной форме.

Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера быта и обслуживания.

Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35–40%, остальная часть теряется, причем большая часть – в виде теплоты.

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии – электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.

Производство энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства, в котором можно выделитьпять стадий :

1. Получение и концентрация энергетических ресурсов : добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т.д.;

2. Передача энергетических ресурсов к установкам, преобразующим энергию ; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т.д.;

3. Преобразование первичной энергии во вторичную , имеющую наиболее удобную для распределения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию);

4. Передача и распределение преобразованной энергии ;

5. Потребление энергии , осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной форме.

Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера быта и обслуживания.

Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35–40%, остальная часть теряется, причем большая часть – в виде теплоты.

Основные типы электростанций и их характеристики

Преобразование первичной энергии во вторичную, в частности в электрическую, осуществляется на станциях, которые в своем названии содержат указание на то, какой вид первичной энергии в какой вид вторичной преобразуется на них:

    ТЭС – тепловая электрическая станция преобразует тепловую энергию в электрическую;

    ГЭС – гидроэлектростанция преобразует механическую энергию движения воды в электрическую;

    ГАЭС – гидроаккумулирующая электростанция преобразует механическую энергию движения предварительно накопленной в искусственном водоеме воды в электрическую;

    АЭС – атомная электростанция преобразует атомную энергию ядерного топлива в электрическую;

    ПЭС – приливная электростанция преобразует энергию океанических приливов и отливов в электрическую;

    ВЭС – ветряная электростанция преобразует энергию ветра в электрическую;

    СЭС – солнечная электростанция преобразует энергию солнечного света в электрическую, и т.д.

В Беларуси более 95% энергии вырабатывается на ТЭС. Поэтому рассмотрим процесс преобразования энергии на ТЭС. По назначению ТЭС делятся на два типа:

    КЭС - конденсационные тепловые электростанции, вырабатывающие только электрическую энергию;

    ТЭЦ - теплоэлектроцентрали, на которых осуществляется совместное производство электрической и тепловой энергии.

ТЭС могут работать как на органическом (газ, мазут, уголь), так и на ядерном топливе.

Основное оборудование ТЭС (рис. 2.3) состоит из котла-парогенератора ПГ, турбины Т и генератора Г. В котле при сжигании топлива выделяется тепловая энергия, которая преобразуется в энергию водяного пара. В турбине Т водяной пар превращается в механическую энергию вращения – турбина со скоростью 3000 оборотов в минуту (50 Герц) вращает электрогенератор Г, который превращает энергию вращения в электрическую. Тепловая энергия для нужд потребления может быть взята в виде пара из турбины или котла. На рисунке, кроме основного оборудования ТЭС, показаны конденсатор пара К, где отработанный пар охлаждается внешней водой и конденсируется (при этом от пара отводится некоторое количество теплоты и выбрасывается в окружающую среду) и циркуляционный насос Н, который подает конденсат снова в котел. Таким образом, цикл замыкается. Схема ТЭЦ отличается тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.

Рассмотренная схема ТЭС является основной, в ней используется парогенератор, в котором водяной пар служит носителем энергии. Имеются тепловые станции с газотурбинными установками. Носитель энергии в таких установках в таких установках – газ с воздухом. Газ выделяется при сгорании органического топлива и смешивается с нагретым воздухом. Газовоздушная смесь при температуре 750–770 о С подается в турбину, которая вращает генератор. ТЭС с газотурбинными установками более маневренна, чем паротурбинная: легко пускается, останавливается и регулируется; пока мощности таких турбин в 5–8 раз меньше, чем паровых, и они должны работать на высокосортном топливе.

Сочетание паротурбинной и газотурбинной установок образует парогазовые установки, в них используются два энергоносителя – пар и газ.

Процесс производства электроэнергии на ТЭС можно разделить на три цикла: химический – процесс горения, в результате которого теплота передается пару; механический – тепловая энергия пара превращается в энергию вращения; электрический – механическая энергия вращения превращается в электрическую.

Общий коэффициент полезного действия ТЭС состоит из произведения коэффициентов полезного действия всех перечисленных циклов:

η тэс = η х · η м · η э

КПД ТЭС теоретически равен:

η тэс= 0,9 · 0,63 · 0,9 = 0,5.

Практически с учетом потерь КПД ТЭС находится в пределах 36–39%. Это означает, что 64–61% топлива используется «впустую», загрязняя окружающую среду в виде тепловых выбросов в атмосферу. КПД ТЭЦ примерно в 2 раза выше, чем КПД ТЭС. Поэтому использование ТЭЦ является существенным фактором энергосбережения.

Атомная электростанция отличается от ТЭС тем, что котел заменен ядерным реактором. Теплота ядерной реакции используется для получения пара.

Рис. 2.4. Принципиальная схема атомной электростанции

1 - реактор; 2 - парогенератор; 3- турбина;

4 - генератор; 5 - трансформатор; б - электролинии

Первичной энергией на АЭС является внутренняя ядерная энергия, которая при делении ядра выделяется в виде колоссальной кинетической энергии, которая, в свою очередь, превращается в тепловую. Установка, где идут эти превращения, называется реактором.

Через активную зону реактора проходит вещество теплоноситель, которое служит для отвода тепла (вода, инертные газы и т.д.). Теплоноситель уносит тепло в парогенератор, отдавая его воде. Образующийся водяной пар поступает в турбину. Регулирование мощности реактора производится с помощью специальных стержней. Они вводятся в активную зону и изменяют поток нейтронов, а значит, и интенсивность ядерной реакции.

Природное ядерное горючее атомной электрической станции – уран. Для биологической защиты от радиации используется слой бетона в несколько метров толщиной.

При сжигании 1 кг каменного угля можно получить 8 кВт·ч электроэнергии, а при расходе 1 кг ядерного топлива вырабатывается 23 млн. кВт·ч электроэнергии.

Более 2000 лет человечество использует водную энергию Земли. Теперь энергия воды используется на гидроэнергетических установках (ГЭУ) трех видов:

    гидравлические электростанции (ГЭС), использующие энергию рек;

    приливные электростанции (ПЭС), использующие энергию приливов и отливов морей и океанов;

    гидроаккумулирующие станции (ГАЭС), накапливающие и использующие энергию водоемов и озер.

Гидроэнергетические ресурсы в турбине ГЭУ преобразуются в механическую энергию, которая в генераторе превращается в электрическую.

Таким образом, основными источниками энергии являются твердое топливо, нефть, газ, вода, энергия распада ядер урана и других радиоактивных веществ.

В зависимости от вида первичной энергии различают тепловые электростанции (ТЭС), гидроэлектрические станции (ГЭС), атомные электростанции (АЭС) и др. К ТЭС относятся конденсационные электростанции (КЭС) и теплофикационные, или теплоэлектроцентрали (ТЭЦ).

Электростанции, обслуживающие крупные и жилые районы, получили название государственных районных электростанций (ГРЭС). В их состав, как правило, входят конденсационные электростанции, использующие органическое топливо и не вырабатывающие тепловой энергии. ТЭЦ также работают на органическом топливе, но, в отличие от КЭС, вырабатывают как электрическую, так и тепловую энергию в виде перегретой воды и пара. Атомные электростанции преимущественно конденсационного типа используют энергию ядерного топлива. В ТЭЦ, КЭС и ГРЭС потенциальная химическая энергия органического топлива (угля, нефти или газа) преобразуется в тепловую энергию водяного пара, которая, в свою очередь, переходит в электрическую. Именно так производится около 80% получаемой в мире энергии, основная часть которой на тепловых электростанциях превращается в электрическую. Атомные и возможно в будущем термоядерные электростанции также представляют собой тепловые станции. Отличие заключается в том, что топка парового котла заменяется на ядерный или термоядерный реактор.

Гидравлические электростанции (ГЭС) используют возобновляемую энергию падающего потока воды, которая преобразуется в электрическую.

ТЭС, ГЭС и АЭС - основные энергогенерирующие источники, развитие и состояние которых определяют уровень и возможности современной мировой энергетики и энергетики Украины в частности. Электростанции указанных типов называют также турбинными.

Одной из основных характеристик электростанций является установленная мощность, равная сумме номинальных мощностей электрогенераторов и теплофикационного оборудования.

Номинальная мощность - это наибольшая мощность, при которой оборудование может работать длительное время в соответствии с техническими условиями.

Из всех видов производства энергии наибольшее развитие в Украине получила теплоэнергетика как энергетика паровых турбин на органическом топливе. Удельные капитальные вложения на строительство ТЭС существенно ниже, чем для ГЭС и АЭС. Значительно короче и сроки строительства ТЭС. Что касается себестоимости вырабатываемой электроэнергии, то она ниже всего для гидростанций. Стоимость производства электроэнергии на ТЭС и АЭС отличается не очень существенно, но все-таки она ниже для АЭС. Однако эти показатели не являются определяющими для выбора того или иного типа электростанций. Многое зависит от места расположения станции. ГЭС строится на реке, ТЭС располагается обычно неподалеку от места добычи топлива. ТЭЦ желательно иметь рядом с потребителями тепловой энергии. АЭС нельзя строить вблизи населенных пунктов. Таким образом, выбор типа станций во многом зависит от их назначения и предполагаемого размещения. В последние десятилетия на себестоимость производства энергии, на выбор типа электростанции и места ее расположения решающее влияние оказывают экологические проблемы, связанные с получением и использованием энергоресурсов.

С учетом специфики размещения ТЭС, ГЭС и АЭС определяются месторасположение электростанций и условия их будущей эксплуатации: положение станций относительно центров потребления, что особенно важно для ТЭЦ; основной вид энергоресурса, на котором будет работать станция, и условия его поступления на станцию; условия водоснабжения станции, приобретающие особое значение для КЭС и АЭС. Немаловажным является близость станции к железнодорожным и другим транспортным магистралям, к населенным пунктам.


Общая характеристика современного энергетического производства

Энергетика область общественного производства, охватывающая добычу энергетических ресурсов, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Энергосистема совокупность энергетических ресурсов; всœех видов, методов и средств их получения, преобразования, распределœения и использования, обеспечивающих снабжение потребителœей всœеми видами энергии.

В энергосистему входят:

· электроэнергетическая система;

· система нефте- и газоснабжения;

· система угольной промышленности;

· ядерная энергетика;

· нетрадиционная энергетика.

Из всœех вышеперечисленных в Республике Беларусь наиболее представлена электроэнергетическая система.

Электроэнергетическая система –совокупность взаимосвязанных единством схем и режимов оборудования и установок по производству, преобразованию и доставке конечным потребителям электрической энергии. Электроэнергетическая система включает в себя электрические станции подстанции, линии электропередачи, центры потребления электрической энергии.

Энергетика – одна из форм природопользования. В перспективе, с точки зрения технологии, технически возможный объем получаемой энергии практически неограничен, однако энергетика имеет существенные ограничения по термодинамическим (тепловым) лимитам биосферы. Размеры этих ограничений близки к количеству энергии, усваиваемой живыми организмами биосферы в совокупности с другими энергетическим процессами, идущими на поверхности Земли. Увеличение этих количеств энергии, вероятно, катастрофично или, по крайней мере, кризисно отразится на биосфере.

Наиболее часто в современной энергетике выделяют традиционную энергетику, основанную на использовании органического и ядерного топлива, и нетрадиционную энергетику, основанную на использовании возобновляемых и неисчерпаемых источников энергии .

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии – электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.

Производство энергии крайне важного вида и снабжение ею потребителœей происходит в процессе энергетического производства, в котором можно выделить пять стадий :

1. Получение и концентрация энергетических ресурсов : добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т.д.;

2. Передача энергетических ресурсов к установкам, преобразующим энергию ; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т.д.;

3. Преобразование первичной энергии во вторичную , имеющую наиболее удобную для распределœения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию);

4. Передача и распределœение преобразованной энергии ;

5. Потребление энергии , осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной форме.

Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера быта и обслуживания.

В случае если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35–40%, остальная часть теряется, причем большая часть – в виде теплоты.

Cтраница 1


Традиционная энергетика - это совокупность технических устройств, использующих хорошо освоенные в технологическом отношении энергетические источники и способы преобразования получаемой от них энергии, в первую очередь электрическую.  

Отдавая день традиционной энергетике - угольной, газовой, нефтяной и термоядерной (к освоению которой мы уже близки), акцент необходимо сделать на экологически чистые, энергосберегающие технологии и возобновляемые источники - Солнце, ветер, водная стихия.  

Альтернативные источники энергии, Традиционная энергетика, Энергетика экологическая.  

Прибавим к этому устаревающее оборудование традиционной энергетики, отсутствие необходимой гибкости и мобильности при энергообеспечения динамического нефтегазового бизнеса, невысокие экологические показатели и не всегда высокое качество электроэнергии. Все это в совокупности заставляет нефтегазовые компании искать альтернативу и находить ее в создании собственных локальных источников энергии.  

Вместе с тем высокую озабоченность вызывают и аварии в традиционной энергетике, на объектах топливного цикла (от добычи сырья до обращения с отходами), а также на объектах с химическими технологиями.  

В последнее время ввиду возникших трудностей с финансированием крупных объектов традиционной энергетики возросло количество заказов на ГТУ-ТЭЦ малой и средней мощности. Представленные в таблице данные относятся только к газотурбинной части электростанции.  

Стремление решить эти и другие проблемы наблюдается практически с начала становления традиционной энергетики. Это стремление реализуется, во-первых, в поисках других первичных энергетических источников и, во-вторых, в разработке иных способов преобразования энергии первичных источников в электрическую. Нередко оба эти направления совмещены.  

Современная нетрадиционная энергетика - это тот резерв, который дает основания надеяться, что названные ранее проблемы традиционной энергетики могут быть решены в обозримом будущем и развитие энергетики будет продолжено с максимальной пользой для человечества.  

Годовые амортизационные отчисления на АЭС рассчитываются, как и на ТЭС, по нормам амортизации, которые являются едиными для аналогичных по устройству, функциональному назначению и условиям работы элементов основных фондов. Наряду с этим на АЭС используются устройства, не имеющие аналогов в традиционной энергетике. Для них по мере накопления опыта эксплуатации должны уточняться сроки службы и нормы амортизации. В нормах амортизации для АЭС должны получить отражение особые условия проведения капитального ремонта оборудования. По причине высокой радиоактивности некоторого оборудования и элементов их ремонт либо невозможен (их не ремонтируют, а заменяют новыми), либо связан со специальными дорогостоящими мероприятиями. Соответственно в нормах амортизации для АЭС должна повышаться реновационная составляющая HP при снижении составляющей по капитальному ремонту и модернизации НК-Р.  

Атомная энергетика в случае безаварийной работы еще более экологична, но и она загрязняет воздух такими токсичными веществами, как радиоактивный йод, радиоактивные инертные газы и аэрозоли. В то же время АЭС представляет собой значительно большую потенциальную опасность по сравнению с предприятиями традиционной энергетики.  

Сборник включает в себя работы по исследованиям в области теплофизики экстремальных состояний и физики высоких плотностей энергии. Рассматриваются различные модели уравнений состояния вещества в экстремальных условиях, некоторые задачи физики ударных и детонационных волн, методы генерации интенсивных импульсных потоков энергии, эффекты взаимодействия мощных ионных и электронных пучков, лазерного, рентгеновского и СВЧ излучения с веществом, экспериментальные методы диагностики быстрых процессов, физика низкотемпературной плазмы, проблемы управляемого термоядерного синтеза и традиционной энергетики, а также различные технологические аспекты. Издание адресовано специалистам в области физико-технических проблем энергетики.  

Безопасность нынешнего поколения реакторов обеспечивается увеличением количества различных систем безопасности и систем ограничения выхода активности, ужесточением требований к оборудованию и персоналу. В результате атомные электростанции становятся более сложными и, следовательно, более дорогостоящими. Атомная энергетика близка к своему экономически предельному уровню: дальнейшее наращивание систем безопасности ведет к снижению существующей конкурентоспособности атомной энергетики по сравнению с традиционной энергетикой.  

Технические устройства, составляющие традиционную энергетику, - это, во-первых, тепловые электростанции (ТЭС), работающие на минеральных - твердых, жидких и газообразных органических топливах (уголь, нефть, газ и др.); атомные электростанции (АЭС), работающие на ядерных топливах (уран, плутоний), получаемых из сырьевых минералов; гидравлические электростанции (ГЭС), использующие возобновляемые гидравлические энергетические ресурсы. Эти электростанции являются базовыми в современной энергетике, составляют так называемую большую энергетику. Их отличительные особенности: значительная единичная мощность, работа в общей электросети (возможна работа и в тепловой сети), единый стандарт на качество вырабатываемой электроэнергии. Во-вторых, в традиционную энергетику входят автономные газотурбинные, дизельные и другие установки, использующие ископаемые органические топлива, и автономные гидравлические установки. Эти установки составляют малую энергетику.