Но основным источником энергии все. Солнце основной источник энергии на земле. Получение бесплатного электричества в домашних условиях


Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце - не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

Солнечная постоянная - количество солнечной энергии, приходящей на поверхность площадью 1 кв.м, развернутую перпендикулярно солнечным лучам в космосе.

Солнце – это наша звезда. Изучая Солнце, мы узнаём о многих явлениях и процессах, происходящих на других звёздах и недоступных непосредственному наблюдению из-за огромных расстояний, которые отделяют нас от звёзд.

Солнце – это основной источник энергии на земле и первопричина, создавшая большинство других энергетических ресурсов нашей планеты, таких, как запасы каменного угля, нефти, газа, энергии ветра и падающей воды, электрической энергии и т.д.

Энергия Солнца, которая в основном выделяется в виде лучистой энергии, так велика, что её трудно даже себе представить. Достаточно сказать, что на Землю поступает только одна двухмиллиардная доля этой энергии, но она составляет около 2,5*10 18 кал./мин. По сравнению с этим все остальные источники энергии, как внешние (излучение луны, звёзд, космические лучи), так и внутренние (внутренние тепло Земли, радиоактивное излучение, запасы каменного угля, нефти и т.д.) пренебрежительно малы.

Солнце - самая близкая к нам звезда представляющая собой огромный светящийся газовый шар, диаметр которого примерно в 109 раз больше диаметра Земли, а его объём больше объёма Земли примерно в 1 млн. 300 тыс. раз. Средняя плотность Солнца составляет около 0,25 от плотности нашей планеты.

Поскольку солнце не твёрдый, а газовый шар, говорить о его размерах следует условно, понимая под ними размеры видимого с Земли солнечного диска.

Внутренняя часть солнца не доступна наблюдению. Она представляет собой своеобразный атомный котёл гигантских размеров, где под давлением около 100 миллиардов атмосфер происходят сложные ядерные реакции, во время которых водород превращается в гелий. Они-то и являются источником энергии солнца. Температура внутри солнца оценивается в 16 миллионов градусов.

Трофические цепи. Основные понятия, элементы.

1. Определение понятий "пищевая цепь", "трофический уровень", "консументы". Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Пример: животное поедает растения, это животное в свою очередь может быть съедено другим животным, и также путем может происходить перенос энергии через ряд организмов - каждый последующий питается предыдущим, поставляющим ему сырье и энергию. Такая последовательность называется пищевой цепью , а каждое ее звено - трофическим уровнем (греч. trophos - питание). Консументы : первичные - питаются первичными продуцентами, т.е. это травоядные животные; вторичные конс. - питаются травоядными, таким образом это уде плотоядные животные, так же как и третьичные конс., поедающие конс. второго порядка.

2 . Живые организмы, входящие в состав биоценоза в экосистеме, неодинаковы с точки зрения специфики ассимиляции ими вещества и энергии. В отличие от растений и бактерий животные не способны к реакци­ям фото- и хемосинтеза, а вынуждены использовать солнечную анергию опосредованно - через органичес­кое вещество, созданное фото- и хемосинтетиками. Таким образом, в биоценозе образуется цепочка после­довательной передачи вещества и эквивалентной ему энергии от одних организмов к другим или так называемая трофическая цепь (от греческого “трофе” - питаюсь).

Поскольку растения строят свой организм без посредников, их называют самопитающимися, или автотрофами. Так как будучи автотрофами, они со­здают первичное органическое вещество из неорганического, они являются продуцентами. Организмы, которые не могут строить собственное вещество из минеральных компонентов, используют органику, созданную автотрофами, употребляя их в пищу. Их называют гетеротрофами, что означает “питаемый другими”, а также консументами (от лат. “консумо” - потребляю). Плотоядные животные используют животные белки со специфическим набором амино­кислот. Они тоже являются консументами, но, в отличие от растительноядных, - консументами вторичными, или второго порядка. Но и на этом трофическая цепь не всегда заканчивается, так как вторичный консумент может служить источником питания для консумента третьего порядка и т.д. Но в одной трофи­ческой цепи не бывает консументов выше пятого порядка вследствие рассеяния энергии.

В процессе питания на всех трофических уровнях появляются “отходы”. Зеленые растения ежегодно частично или полностью сбрасывают листья. Значи­тельная часть организмов по тем или иным причинам постоянно отмирает. В конечном итоге так или иначе созданное органическое вещество должно частично или полностью замениться. Эта замена происходит благодаря особому звену трофической цепи - редуцентами (от лат. “редукцио” - возврат). Эти организмы - преимущественно бактерии, грибы, простейшие, мел­кие беспозвоночные - в процессе жизнедеятельности разлагают органические остатки всех трофических уровней продуцентов и консументов до минеральных веществ. Минеральные вещества, а также диоксид углерода, выделяющийся при дыхании редуцентов, вновь возвращаются к продуцентам.

Разные трофические цепи, в свою очередь, связа­ны между собой общими звеньями, образуя очень сложную систему, называемую трофической сетью.

Трофическая цепь в биогеоценозе есть одновре­менно цепь энергетическая, т.е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям. Поток энергии через экосистему можно измерить в различных ее точках, установив тем самым, какое количество солнечной энергии содержится в органи­ческих веществах, образованных в процессе фотосинтеза; какую часть энергии, заключенной в рас­тительном материале, может использовать растительноядное животное; какую часть этой энергии успевает использовать растительноядное, прежде, чем его съедает плотоядное, и так далее, от одного трофи­ческого уровня к другому.

Для существования и развития человеческого общества необходимы . Решающая роль в развитии мировой энергетики принадлежит ресурсам энергии, выяснению вопроса о том, какими геологическими и разведанными запасами различных источников энергии и, в частности, нефти и газа, располагает человечество, каков энергетический потенциал нашей планеты.

По степени долговечности источники энергии делятся на возобновляемые и не возобновляемые. К возобновляемым или неисчерпаемым источникам энергии относятся: солнечная энергия, энергия ветра, энергия приливов и отливов, гидроэнергия, геотермальная энергия.

Не возобновляемые источники энергии: атомная энергия и энергия каустобиолитов. Каустобиолиты - это горючие полезные ископаемые (каусто - горючий, биос - органический, литос - камень). К ним относятся каменный уголь, нефть, природные углеводородные газы, сланцы, торф.

Мировые источники энергии: солнечная энергия

Ежедневно на Землю поступает 1,5⋅10*22 Дж солнечной энергии . Около 30 % солнечных лучей отражается облаками и земной поверхностью, но большая часть проникает через атмосферу. Нагревая атмосферу, океаны и сушу, солнечное тепло вызывает ветры, дожди, снегопады и океанские течения.

Однако вся энергия вновь излучается в холодный космос, сохраняя земную поверхность в тепловом равновесии.

Небольшая часть солнечной энергии аккумулируется в озёрах и реках, другая же часть - в живых растениях и животных. Солнечная энергия обладает такими свойствами, которые не встречаются ни у одного другого источника: она возобновляема, экологически чиста, управляема, по величине в тысячи раз превосходит всю ту энергию, которая используется в настоящее время.

Солнечная энергия используется для обогрева теплиц, домов, аккумулируется в солнечных батареях, которые преобразуют солнечную радиацию в электроэнергию, на космических кораблях применяются солнечные панели или фотоэлементы, обеспечивающие космонавтов электроэнергией при работе в открытом космосе. Недостаток этой энергии в том, что солнечные лучи рассеиваются земной поверхностью и требуется большая поверхность, собирающая солнечный свет.

Энергия ветра

Примерно 46 % поступающей солнечной энергии поглощается океаном, сушей и атмосферой. Эта энергия вызывает ветры, волны и океанские течения, нагревает моря и порождает колебания погоды. Оценка энергии ветра в глобальном масштабе – порядка 10*15 Вт, однако большая часть энергии сосредоточена в ветрах, дующих на заоблачных высотах, и, следовательно, недоступна для использования на поверхности суши. Устойчивые поверхностные ветры обладают мощностью порядка 10*12 Вт и могут быть использованы ветряными установками и в перевозках по морю.

В последние годы производство ветровой энергии в мире ежегодно увеличивается на 28 %. Предполагается, что к 2020 году на эту энергию будет приходиться до 10 % производимого в мире электричества.

В 2005 году принят закон Азербайджанской Республики о применении энергии Солнца и ветра, которых достаточно в стране.

Энергия приливов и отливов

Приливы являются результатом гравитационного притяжения Луны и Солнца, причём воздействие Луны значительно больше. Сила приливов является выражением силы вращения планеты. Высота приливов не везде одинакова.

Она редко превышает один метр при больших глубинах в океане, а над континентальным шельфом может достигать до 20 метров. Мощность приливов оценивается в 0,85⋅10*20 Дж. Во Франции (река Ранс) и в России (Кислая Губа) станции уже генерируют электричество из приливных волн. В утилизации приливов и отливов существует много проблем. Для эффективной работы станций требуется высота приливной волны более 5 м и наличие перекрытых лёгкими плотинами заливов - эстуариев. Но почти везде прибрежные приливы имеют высоту около 2 м и только, примерно, 30 мест на Земле удовлетворяют указанным требованиям. Наиболее важными из них являются: два смежных залива - Фанди (Канада) и Пассамукуодди (США); французское побережье вдоль Ла-Манша, где станция на Ранс успешно действует уже много лет, в Ирландском море эстуарии рек Англии, Белое море (Россия) и побережье Кимберли (Австралия). Энергия приливов может иметь достаточно большое значение в будущем, потому что является одной из немногих энергетических систем, которые действуют без серьёзного ущерба для окружающей среды.

Гидроэнергия

Примерно 23 % солнечной радиации уходит на испарение воды, выпадающей затем в виде дождя и снега.

Энергия воды представляет собой возобновляемые ресурсы. Примитивным образом сила воды использовалась за тысячи лет до двадцатого столетия, когда началось широкомасштабное перекрытие рек для производства электроэнергии. Из всех возобновляемых энергетических ресурсов наиболее интенсивно используется сила воды. Но неблагоприятным обстоятельством является то, что плотины имеют конечный и, скорее всего, короткий срок жизни. Движущийся поток воды переносит груз тонких глинистых частиц в виде суспензии; как только поток перекрывается, и скорость воды падает, этот материал отлагается, и резервуар может быть целиком заполнен ими за 50-200 лет.

Наибольший неосвоенный потенциал этой энергии может быть использован там, где имеются большие запасы энергии воды.

Геотермальная энергия

При погружении вглубь земли на 1 км температура увеличивается от 15 до 75 С. В ядре земли температура, вероятно, превышает 5000 C. В среднем из недр к поверхности поступает 6,3⋅10*6 Дж энергии. Кроме того, геотермальная энергия связана с распадом таких радиоактивных элементов как U

238 , U 235 , Th 232 , K 40, которые в рассеянном виде распространены в недрах повсеместно. При этом подземные воды нагреваются и выходят на поверхность в виде пара и горячей воды (гейзеры). Геотермальные горячие воды используются в Исландии, Японии, Италии, Индонезии, на Филиппинах, России, Америке и Новой Зелландии для обогрева домов, плавательных бассейнов, теплиц. Но они имеют всё же малое значение по сравнению с производством электроэнергии.

Атомная энергия

Атомную энергию можно получить с помощью двух процессов. Первый - слияние или синтез лёгких элементов, таких как водород и литий, при котором образуются более тяжёлые элементы. Это процессы, идущие на Солнце и в водородной бомбе, но они трудно контролируемы; возможно, в будущем синтез таких элементов может стать главным источником энергии. Второй процесс - деление (распад) тяжёлых элементов, таких как уран и торий. Это процесс, идущий в атомной бомбе. Поскольку эта реакция может быть контролируема, деление тяжёлых элементов уже используется для генерации электричества на атомных электростанциях. Природной способностью к распаду обладает только уран-235, который составляет всего 0,7 % общего количества природных атомов урана. Цепная реакция урана-235 впервые была осуществлена профессором Энрико Ферми 2 декабря 1942 года в одном из наиболее важных экспериментов в истории Земли. Стоимость выделения атомов урана-235 высока. Однако при распаде одного атома урана-235 высвобождается 3,2⋅10*11 Дж энергии.

Поскольку в 1 г атома урана-235 содержится около 2,56⋅10-21 атомов, то при распаде 1 г урана образуется около 8,19⋅10*10 Дж, что эквивалентно энергии, получаемой при сгорании 2,7 т угля. В настоящее время на уране-235 работает около 300 атомных электростанций. Первое место по использованию атомной энергии занимает США (около 50 %), затем Европа (30 %) и Япония (12 %). При использовании атомной энергии остро стоит проблема безопасности, а также проблема утилизации радиоактивных отходов.

Горючие ископаемые

В настоящее время используются три вида горючих ископаемых: каменный уголь, нефть и природный газ. На их долю приходится около 90 % мировой энергии. Уголь. Мировые запасы всех видов углей оцениваются в 13800 млрд. т., а дополнительные потенциальные ресурсы - в 6650 млрд. т. География распределения такова: примерно 43 % углей мира залегают в России, 29 % - в Северной Америке, 14,5 % - в странах Азии, главным образом в Китае, и 5,5 % - в Европе. На остальной мир приходится 8 %.

Хотя уголь во всём мире не является ведущим видом топлива, в некоторых странах он всё ещё преобладает, и, возможно, в будущем трудности в снабжении нефтью и газом приведут к возрастающему использованию угля. При использовании угля возникает много трудностей. Он содержит от 0,2 % до 7 % серы, присутствующей в основном в виде пирита FeS2, сульфата закисного железа FeSO4⋅7H2O, гипса CaSO4⋅2H2 O и некоторых органических соединений.

Когда уголь сгорает, выделяется окисленная сера, выбросы которой в атмосферу вызывают кислотные дожди и смог. Другая проблема - это сама добыча угля. Подземные методы разработки трудны и даже опасны. Разработка открытым методом более эффективна и менее опасна, но вызывает нарушение поверхностного слоя на большой площади. В современном мире основное применение в качестве источников энергии имеют нефть и природные углеводородные газы.

Cтраница 1


Основные источники энергии, используемые человеком.  

Основной источник энергии, используемый автотрофа-ми, - Солнце. Образно говоря, автотрофы являются кормильцами биосферы: они не только питаются сами, но и кормят (своим телом) других. Поэтому их называют продуцентами. Биомасса, создаваемая ими, называется первичной.  

Основными источниками энергии на нефтеперерабатывающих заводах являются тепло, водяной пар и электроэнергия. Для получения всех видов энергии расходуется до 6 % перерабатываемой нефти, причем половина этого - количества сжигается на ТЭЦ, а другая - в трубчатых печах технологических установок. В связи с этим одной из важнейших проблем нефтегазоперфаботки является повышение технико-экономической эффективности всех технологических процессов.  

Линии излучения некоторых лазеров.| Линии излучения некоторых лазеров, слабо или умеренно поглощаемые в атмосфере.  

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.  

Основным источником энергии, аккумулируемой в аденозинтрифосфате (АТФ), является глюкоза. В клетках глюкоза с помощью ферментных систем сначала подвергается бескислородному расщеплению до двух молекул молочной кислоты СН3СН (ОН) СООН. Энергия, выделяемая при расщеплении одной молекулы глюкозы при гликолизе, аккумулируется в двух вновь образованных молекулах АТФ. По мере необходимости АТФ гидролизуется на аденозиндифосфат (АДФ) и фосфорную кислоту с выделением около 10 ккал тепловой энергии. Молочная кислота подвергается дальнейшему кислородному расщеплению в последовательных окислительно-восстановительных реакциях до углекислого газа и водорода, который, в свою очередь, окисляется кислородом воздуха до воды. Энергия, освобождаемая при этом, расходуется на регенерацию АТФ, то есть на присоединение к АДФ третьего остатка фосфорной кислоты. В результате полного расщепления двух молекул молочной кислоты выделяется энергия, достаточная для синтеза 36 молекул АТФ из АДФ.  

Основным источником энергии на Земле является Солнце.  

Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1 28 - Ю13 тонн УТ, в том числе, ископаемые угли 1 12 - Ю13 тонн, нефть 7 4 - Ю11 тонн и природный газ 6 3 - Ю11 тонн УТ.  

Основным источником энергии (тепла) в процессе азотирования является реакция азотирования, которая дает до 96 % от общего прихода энергии. Электроэнергия, подводимая при разогреве печи, составляет всего 2 - 3 % от общего прихода энергии.  

Основным источником энергии, поступающей на Землю, является Солнце. Солнечное излучение формируется в результате интенсивного взаимодействия с веществом в верхних слоях Солнца и находится с ним в равновесии. Электромагнитное излучение Солнца можно охарактеризовать двумя температурами - энергетической, которая определяется законом Стефана-Больцмана, и спектральной, определяемой из закона Вина. Для равновесного излучения эти температуры равны. Показателем неравновесности излучения может служить разность энергетической и спектральной температур. По мере удаления от поверхности Солнца энергетическая температура падает, а спектральная температура остается без изменения. Таким образом, неравновесность излучения по мере удаления от Солнца возрастает. Поэтому с увеличением расстояния от Солнца создаются более благоприятные условия для процессов самоорганизации, которые протекают в неравновесных условиях. С другой стороны, сложность образуемых систем зависит от температуры. С увеличением расстояния от Солнца температура падает, поэтому существует некоторое оптимальное расстояние, на котором возможно образование систем максимальной сложности. Уровень самоорганизации системы определяется степенью отклонения от равновесного состояния и уровнем сложности. В солнечной системе наиболее оптимальное сочетание названных параметров наблюдается на расстояниях, соответствующих орбите Земли. Таким образом, в Солнечной системе наибольший уровень самоорганизации может быть достигнут на Земле.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа и газовой шапки; давление растворенного газа в нефти в момент выделения газа из раствора; сила тяжести; упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа газовой шапки, давление растворенного газа в нефти в момент выделения газа из раствора, сила тяжести, упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно. Таким образом, энергетические ресурсы нефтеносного пласта характеризуются существующим в нем давлением. Чем выше давление, тем больше при прочих равных условиях запасы энергии и тем полнее может быть использована залежь нефти.  

Основным источником энергии в промышленности, сельском хозяйстве и в других отраслях народного хозяйства служит топливо. В зависимости от физического состояния топливо подразделяется на твердое, жидкое и газообразное.  

Основными источниками энергии для человечества были мускульная сила людей и рабочего скота, а для обогрева жилищ и приготовления пищи использовалась древесина и навоз домашних животных. Однако доля древесины и древесного угля была велика, а мускульная сила человека и животных применялась по-прежнему.  

Здравствуйте дорогие читатели ! Я, как и обещала, подготовила для Вас статью, в которой расскажу Вам о том, что такое возобновляемые источники энергии. Каких они бывают видов и чем каждый из них интересен. Давайте же начнем...

В наши дни ведется поиск альтернативных неисчерпаемых источников энергии. Некоторые из них уже разрабатываются. Энергия ветра использовалась сотни лет для плавания судов и работы ветряных мельниц. Современные ветровые турбины предназначенные для производства электричества (в одной лишь Калифорнии установленный в 15000 таких ветряков). Американские ученые пришли к выводу, что сила ветра может обеспечить выработку всей производимой США электроэнергии. Также в энергию можно преобразовывать и солнечное тепло. Сейчас в мире устанавливают множество солнечных батарей, которые обеспечивают электроэнергией какую-то часть населения в некоторых странах, в частности Филиппин, Австралии. В нынешней экологической ситуации на Земле всё больше и больше стран пытаются переходить на возобновляемые источники энергии и отказываться от существующих источников энергии из ископаемого топлива.

Существует множество современных разработок солнечных батарей и ветровых электростанций, которые с каждым годом усовершенствуются. Такое решение было принято для того, чтобы, во-первых, защитить нашу планету от ещё большего загрязнения, а во-вторых, чтобы удешевить электроэнергию для людей, которые с каждым годом потребляют всё больше и больше энергии. Сейчас становиться «модным» использовать энергию из возобновляемых источников, и больше такой вид энергии не считается устаревшим, неэффективным и неперспективным. Все как раз таки наоборот.

Вода, после ископаемого топлива, является древнейшим и важнейшим источником энергии. Водяные колеса используют уже более 2000 лет. Их в движение приводит течение рек. Такие колеса стали первым источником энергии в период Промышленной Революции конца XVIII века. В Европе в это время их насчитывалось примерно полмиллиона. Их использовали для перемалывания зерна, раздувания кузнечных мехов и управления падающим кузнечным молотом; при обжарке железа, высверливания оружейных стволов, а также для работы прядильных машин и ткацких станков. Чтобы обеспечить необходимый поток воды, обычно либо перегораживают реку плотиной, создавая запруду, либо отводят часть реки в мельничном пруду.

В качестве источника энергии сегодня из воды используется для производства электричества, или гидроэлектроэнергии. Современные ГЭС включают плотины и огромное водохранилища, которые обеспечивают поток падения воды с большой высоты. На современных ГЭС, вместо малоэффективных и громоздких водяных колес, сегодня установлены турбины, в которых поток воды вращает ротор. К каждой из таких турбин подключён электрогенератор.

Почти треть всей электроэнергии используемой в мире дает гидроэнергетика. Норвегия, в которой электроэнергии на душу населения больше, чем где-либо, живет практически исключительно за счёт гидроэнергии.

На гидроаккумулирующих электростанциях (ГАЭС) гидроэлектростанциях (ГЭС) используется потенциальная энергия воды, которая накапливается с помощью дамб. Существуют очень большие ГЭС. Самые широко известные две больших ГЭС в России — это Краснодарская (6000 МВт) и Братская (4100 МВт). Самая большая ГЭС в США это Гранд-Кули, ее мощность 6480 МВт. В 1995 году 7% электроэнергии, которая производилась во всём мире приходилось на гидроэнергетику.

Считается, что при использовании всех возможных источников можно было бы получить 2,25 млрд. кВт гидроэлектроэнергии. Начало 1990-х годов вырабатывалось всего лишь около 363 млн. кВт, или примерно 1% производимой энергии в мире.

Гидроэнергия — это один из самых чистых и дешевых энергоресурсов. Что очень важно этот ресурс постоянно возобновляется за счет прилива дождевой и речной воды.

Важнейшим преимуществом гидроэлектроэнергии является использование неисчерпаемых ресурсов. Однако для создания водохранилищ требуется затопление больших территорий, что наносит большой вред окружающей среде и нарушает экологический баланс.

Также для производства электричества научились использовать энергию приливов. Существуют приливные электростанции, в которых используются перепады уровней воды, образовавшиеся во время прилива и отлива. Для этого ограждают прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Потом воду выпускают, и она вращает гидротурбины. Устройство, называемое «нырок», преобразует движение волны в энергию. Приливные электростанции могут быть ценной энергетической помощью местного характера, но на Земле не так много соответствующих мест для их строительства.

Геотермальная электроэнергия вырабатывается с помощью тепла недр Земли. Проще всего использовать геотермальную энергию горячих источников и гейзеров. Геотермальная энергия уже используется в ряде стран, например Италии, Исландии, Новой Зеландии (в мире насчитывают 150 геотермальные электростанции) Толщина земной коры составляет 32 — 35 км, что значительно тоньше, чем лежащий под ней шар мантии, который тянется приблизительно на 2900 км к горячему жидкому ядру.

Мантия является источником богатых газами огненно-жидких пород (магма), которые извергаются действующими вулканами. Тепло, в основном, выделяется вследствие радиоактивного распада веществ в земном ядре. Температура и количество этого тепла настолько большие, что они провоцируют плавления пород мантии. Под поверхностью горячие породы могут создавать тепловые «мешки». В контакте с такими «мешками» вода нагревается и даже превращается в пар. Эти «мешки» преимущественно герметичны, поэтому горячая вода и пар очень часто находятся под большим давлением, а температура в этих средах превышает точку кипения воды на поверхности Земли. Самые большие геотермальные ресурсы сосредоточены в вулканических зонах на границах корковых плит.

Самым основным недостатком геотермальной энергии является тот факт, что ресурсы ограниченны и локализованы, если только исследования не показывают наличие значительных запасов горячий породы или возможность бурения скважин к мантии. А в 1991 году группе физиков ядерщиков из Оксфорда, что в Англии, удалось получить энергию с помощью ядерного синтеза. Речь идет о получении безопасного вида энергии.

Национальная научная организация США и НАСА провели исследования, которые засвидетельствовали, что значительное количество ветроэнергии в США можно получать в районе Больших озер, на Восточном побережье, а особенно на цепочке Алеутских островов. Максимальная расчетная мощность ветровых электростанций в этих областях может обеспечить 12% потребности США в электроэнергии. Самые большие ветроэлектростанции США размещены возле Голден Дейла, что в штате Вашингтон, где каждый из трёх генераторов (установленных на столбах высотой 60 м, диаметром ветрового колеса 90 м) дают 2,5 МВт электроэнергии. Также сейчас много стран Европы устанавливают ветроэлектростанции по новым современным технологиям. Они обеспечивают часть населения электроэнергией. Существуют программы по постепенному полному переходу на возобновляемые источники энергии во многих странах.

У солнечной энергии есть два основных преимущества. Во-первых: ее много и она относится к энергоресурсам, которые возобновляются (существование Солнца оценивается приблизительно в 5 млрд лет). Во-вторых: ее использование не причиняет нежеланных экологических последствий. Но использованию солнечной энергии препятствуют некоторые трудности. Количество этой энергии огромно, но она бесконтрольно рассеивается.

Для того чтобы получать большое количество энергии, необходимы коллекторные поверхности большой площади. Кроме этого, возникает проблема нестабильности энергосбережения: Солнце не всегда светит. Даже в пустынях, где преобладает безоблачная погода, день меняется ночью. Таким образом, необходимы накопители солнечной энергии. Но с современными технологиями все меняется и уже существуют такие накопители, и их постоянно усовершенствуют. Плюс ко всему технологии создания солнечных панелей тоже не стоят на месте, они стали гораздо эффективнее. Это уже не прошлый век! Это дает огромное преимущество для использования солнечной энергии. Некоторые теплые страны постепенно переходят на такие источники энергии.

Можно выделить три основных направления использования солнечной энергии: для кондиционирования воздуха, для отопления (в том числе горячего водоснабжения) и для прямого превращения в электроэнергию с помощью солнечных фотоэлектрических преобразователей и для крупномасштабного производства электроэнергии на основе теплового цикла.

На этом пока все на сегодня, пишите в комментариях, какой источник возобновляемой энергии Вам больше нравиться. Или, может быть, Вы уже используете какой-нибудь из них. Об ископаемом топливе можете почитать , а об энергетических ресурсах, в общем, . Подписывайтесь, чтоб не пропустить выход новых постов. Пока-пока всем.

Применение атомной энергии Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Мирное использование источников...

Виды энергии – известные человечеству типы энергии

Понятие «энергия» определяется как мера различных форм движения материи и как мера перехода движения материи из одной формы в другую. Соответственно, виды и типы энергии различают по формам движения материи. Челочек имеет дело с различными видами энергии. По сути, весь технологический процесс есть преобразование одних видов энергии в другие. В процессе прохождения технологического тракта энергия многократно преобразуется из одного вида в другой, что ведет к уменьшению ее полезного количества из-за потерь и рассеяния в окружающей среде.

Типы энергии известные сегодня

  • Механическая
  • Электрическая
  • Химическая
  • Тепловая
  • Световая (Лучистая)
  • Ядерная (Атомная)
  • Термоядерная (Термоядерного синтеза)
Кроме того, нам известны и другие виды энергии, названия которых имеют не физический, а описательный смысл, такие как ветровая энергия, или геотермальная энергия. В подобных случаях физическая форма характера энергии подменяется названием ее источника. Поэтому правильно говорить скорее о механической энергии ветра, энергии потока ветра, или тепловой энергии геотермальных источников. В противном случае, количество псевдо энергий можно будет плодить до бесконечности, выдумывая мусорную энергию, водородную энергию, ментальную энергию, или жизненную энергию, и энергию рук. Сочетая слово «энергия» с конкретными объектами мы лишаем эту связку физического смысла. Невозможно измерить количество психической энергии, или энергии воли. Остается лишь намек, что предмет имеет какую-то энергию, а какую – нам неизвестно. Налицо оказывается замусоривание текста или речи словом, не несущим смысловой нагрузки, ведь каждый предмет несет энергию и упоминать об этом бессмысленно. А по аналогии с энергией мысли должна появиться масса мысли, длина, ширина и высота мысли, а также ее плотность. Короче говоря, такие обороты – очевидное свидетельство глупости и неграмотности автора, или оратора.

Физические понятия, связанные с определением слова «энергия»

Но вернемся к реальным физическим понятиям, связанным с определением слова «энергия». Выше перечисленные типы энергии известны человеку и использовались им на протяжении всей истории цивилизации. Исключение составляет разве что энергия атомного распада, полученная лишь в начале 20-го века. Так, механическую энергию мы используем до сих пор, катаясь на велосипеде, используя маятниковые часы, поднимая и опуская грузы краном. Электрическая энергия знакома нам издревле в виде молний и статического электричества. Однако широко этот тип энергии стал применяться лишь с 19 века, когда были изобретены Вольтов столб – батарея постоянного тока и . Однако и в древности люди знали и использовали этот вид энергии, хотя и не повсеместно. Известны древнеегипетские украшения и предметы культа, покрытие которых могло быть выполнено только электролизом. — пожалуй, самая распространенный и широко используемый вид энергии, как в древности, так и в наши дни. Костер, угли, горелка, спички и многие другие предметы, связанные с горением имеют в своей основе энергию химического взаимодействия органического вещества и кислорода. Сегодня высокотехнологичное «горение» осуществляется в и , в и . Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – . К большому сожалению, к.п.д. тепловых машин невелик, причем ограничения накладывает не материал, а теория. Для предел равен 40%. На основе химических взаимодействий, химической энергии действуют и человеческие тела и все животные. Употребляя в пищу растения, мы получаем от них энергию химических связей, сформированную благодаря поглощению солнечной энергии. То есть, опосредованно, человек также питается солнечной энергией, как питается ей все живое на Земле. Солнца – это та энергия, без которой не существовало бы жизни на нашей планете. Практически все виды и типы энергии, кроме атомной и термоядерной, можно полагать вторичными, по отношению к лучистой солнечной энергии. Механическая энергия приливов-отливов, а также тепловая геотермальных источников также не связаны с солнечным излучением.

Термоядерная энергия лежит в основе работы нашего центрального светила – Солнца

А это значит, что и солнечная энергия в свою очередь является порождением термоядерной энергии синтеза, выделяющейся в недрах Солнца. Таким образом, подавляющее большинство видов энергии, используемых нами на Земле, имеют своего первичного прародителя в виде термоядерной энергии синтеза. Ядерная, или атомная энергия – единственный вид энергии, выпадающий за пределы «стандартного» природного энергетического оборота. До появления человека, природа не знала (за редким исключением) процессов массового точечного распада атомных ядер с выделением огромной энергии. Исключение составляет африканский природный «атомный реактор» — месторождение урановых руд, где идут реакции атомного распада с нагревом окружающих пород. Однако в природе атомный распад длится миллионы лет, ведь периоды полураспада урана и плутония весьма велики. И хотя атомному распаду подвержены также многие другие атомы, помимо урана и плутония, в целом, в единицу времени эти процессы не вызывают существенных изменений в окружающем веществе. Человек внес свои изменения в энергетический баланс планеты, взрывая бомбы, строя атомные станции, сжигая нефть, газ и уголь. Безусловно, подобные процессы происходили и до человека, но они были растянуты на миллионы лет. Падали метеориты, горели леса, происходили выбросы углекислого газа из болот и толщ мирового океана, распадался уран. Но медленно — в небольших объемах на единицу времени.

Альтернативные источники

Сегодня активно развиваются альтернативные виды энергии и альтернативные . Однако в самих этих словах уже кроется ошибочное отношение к слову «энергия». Называя источники энергии «альтернативными» мы противопоставляем их «традиционным» источникам – углю, нефти и газу. И это понятно. Но, говоря «альтернативный вид энергии» мы несем чушь, потому что различные виды энергии существуют вне наших желаний. И не ясно, чему альтернативна энергия ветра, ведь она просто есть. Или чему альтернативна солнечная и термоядерная энергия нашего светила. Мы в любом случае, пользуемся ею, и странно называть ее альтернативной, поскольку как раз для нее альтернатив то и нет. В ближайшие тысячи лет мы никуда не уйдем от использования солнечной энергии, поскольку на ней базируется вся экосистема планеты. Аналогично странно выглядят слова «нетрадиционные виды энергии», «возобновляемые виды энергии», или «экологически чистые виды энергии». Какой вид энергии традиционен? Как можно возобновить тот или иной вид энергии? А как проверить энергию на экологическую чистоту? «Традиционность», «возобновляемость» и «экологичность» разумнее и правильнее отнести к . Тогда все сразу станет ясно и понятно. И тогда, упорядочив причинно-следственные связи можно приступать к поиску. Нетрадиционные виды источников энергии можно легко найти, изучая природу и окружающий мир. Здесь Вам и навоз для отопления, и сено, и генератор, использующий мускульную силу.

Возобновляемые источники энергии следует искать только в среде природных процессов

Подобных процессов не так уж много и все они связаны с движением по планете вещества – земли, воды, воздуха, а также с деятельностью живых организмов. Хотя, строго говоря, возобновляемых источников энергии – нет, поскольку главная наша «батарейка» — Солнце – имеет ограниченный срок службы. А для поиска экологически чистых источников следует для начала ясно определить критерии экологичности, ведь, по сути, любое вмешательство человека в энергобаланс планеты наносит урон экологии. Строго говоря, не может быть экологически чистых источников энергии, ведь они в любом случае будут влиять на экологию. Мы можем лишь свести это влияние к минимуму, или компенсировать его. При этом любые компенсационные воздействия должны производиться в рамках глобальной аналитической прогнозной модели.